C³ main linac beam dynamics

250 GeV beam dynamics

Wei-Hou Tan, Zenghai Li, Emilio Nanni 2024-02-13

The Cool Copper Collider (C³)

Parameter	Value
Cryocooled temperature	77 К
Length	8 km
Center of mass energy	250 GeV
Number of bunches	133
Charge per bunch	1 nC
Bunch spacing	5.25 ns (30 RF cycles)
Field gradient	70 MV/m

C³ main linac

- Total length: 2.3-kilometer
- C³ main linac consists of
 - 253 cryomodules
 - 4 rafts in each cryomodule, 2.3-meter each
 - 2 RF structures in each raft, 1-meter each
 - 1 quad in each raft, 0.15-meter each

2.3-meter raft

Los Alamos

TID RFAR

Parameter	Initial value	Target value
Beam energy	10 GeV	125 GeV
Emittance x, y	775, 10 nm	900, 20 nm
Energy spread	1.5%	0.36%
Bunch length	100 µm	100 µm
Charge, # of bunches	1 nC, 133	1 nC, 133
Bunch spacing	5.25 ns (30 RF cycles)	N/A
Field gradient	70 MV/m	N/A
RF frequency	5.712 GHz, C- band	N/A
Quad length	15 cm	N/A

C³ main linac beam optics

• FODO lattice with logarithmic phase advance

$$\tan \frac{\mu_n}{2} = \tan \frac{\mu_1}{2} \left(\frac{\gamma_1}{\gamma_n}\right)^{0.5}$$
$$K_{1,n}L_n = K_{1,1}L_1 \left(\frac{\sin \mu_n/2}{\sin \mu_1/2}\right)$$

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

1

Single bunch beam dynamics

Short range wakefields

- Short range wakefields are included
- Aperture radius is 3.55 mm
- Beam is accelerated off-crest to provide chirp for BNS damping

C3 single bunch tracking

• Single bunch tracking example

C³ single bunch tracking

• Beam initial alignment needs to be smaller than 0.4 micron for 10% emittance growth

Vibration tolerance

- Vibration tolerance studies were performed using ELEGANT simulations
- Random misalignment of beamline elements were inserted to investigate vibration tolerance
- RF structure vibration tolerance needs 10 μm

Vibration tolerance

- Vibration tolerance studies were performed using ELEGANT simulations
- Random misalignment of beamline elements were inserted to investigate vibration tolerance
- Quadrupole vibration tolerance needs down to 10 nm

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

2

Multi bunches beam dynamics

Long-range wakefields

- Long-range higher-order modes (HOMs) wakefields are causing emittance growth along the bunch train
- Notably the transverse wakefields
- The current slot damping result is provided by Dongsoon Kim from LANL

Long-range wakefields damping

- Waveguide slot with NiCr absorbers is used to provide damping
- Courtesy of Dongsung Kim, Haoran Xu, Evgenya Simakov from LANL

Long-range wakefields damping

Multi bunches beam dynamics

- Two, tapered waveguide slot
- Elegant simulations
- Only long-range transverse wakefields
- Assume perfectly aligned lattice
- Bunches are misaligned randomly with 0.3 μm RMS
- Identify frequency bands that need detuning or further damping
- Estimate the required detuning width

💦 Los Alamos

TID RFAR

Parameter	Initial value	Target value
Beam energy	10 GeV	125 GeV
Emittance x, y	775, 10 nm	900, 20 nm
Bunch length	100 µm	100 µm
Charge, # of bunches	1 nC, 133	1 nC, 133
Bunch spacing	5.25 ns (30 RF cycles)	N/A

Identify frequency bands that need detuning

 $Q \times kick factor (V/pC/m/mm)$ 20000 Emittance growth along the bunch train 15000 Bunches oscillate at sub-harmonic of 17.4 GHz and 24.1 GHz bands 10000 × × 5000 ⋇ 15 25 10 30 35 40 20 7 Frequency (GHz) 6000 average 0.010 case with largest final emittance FFT of centroid 0.008 4000 $\varepsilon_{ny} \ (\mathrm{nm})$ 0.006 Also close to 2000 0.004 sub-harmonic of 5.712GHz 0.002 0 0.000 100 120 20 40 60 80 20 40 60 80 Los Alamosnch number frequency (MHz) **TID RFAR** 16

Identify frequency bands that need detuning

- Five frequency bands were identified
- Gaussian detuning were applied to investigate the required frequency width to suppress the emittance growth

Gaussian detuning

Gaussian detuning were applied to investigate the • required frequency width to suppress the emittance growth

Multi bunches beam dynamics with detuning

- Emittance growth can be suppressed
- 40 to 80 MHz rms frequency width is needed for detuning

Summary

- Single bunch beam dynamics
 - Vibration tolerance for RF structure and Quads are identified
 - Studies on raft vibration will be conducted
- Multi bunches beam dynamics
 - Frequency bands that are detrimental to emittance are identified
 - The amount of detuning were estimated using Gaussian detuning
 - Results will be used to refine the design of the RF structure

Acknowledgement

- Some of these works were done by Glen White
- Dongsung Kim, Haoran Xu, Evgenya Simikov from LANL
- Thanks to Michael Borland and Robert Soliday from ANL for the support on Elegant simulations
- Simulations were performed at SLAC S3DF and NERSC facilities

