The alignment of the C³ accellerator structures and Quads with Rasnik

Harry van der Graaf, Joris van Heijningen, Anoop Nagesh Koushik, Tristan du Pree, Niels van Bakel

> C³ Workshop SLAC Feb 13 2024 13:30 – 13:50 h

University of Antwerp I Faculty of Science

Long distance Rasniks: RasDif

Alignment over long distance (> 100 m): RasClic, later RasDif:

- replace lens by zone plate (diffraction plate)
- replace coded mask by monochromatic spherical-wave light source (4 \$ laser diode)

H. Manaud Durand et al., *RASCLIC: a long baseline 3-point alignment system for particle accelerators*, presented at the 10th *International Workshop on Accelerator Alignment*, KEK, Tsukuba, Japan February 2008.

Figure 4.8: (a) Design and dimensions of the diffraction pattern, (b) simulations of the resulting diffraction pattern, (c) a photograph of the plate holder and (d) a photograph of the pixel image sensor read-out at the PC

Pioneered by A. Seryi, SLAC:

Investigation of slow motions of the SLAC linac tunnel, SLAC-PUB-8597 8597 (1) (2000) P06034, arXiv:physics/0008195.

Figure 4.7: Schematic overview of the RasCLiC set-up, showing the operation of the field stops

From 3-point alignment system to n-point alignment system:

Cam: CMOS image pixel sensor + supporting pcb

Microsoft webcam HD-3000 Model 1456 or earlier (2012) has been reported to operate in LN₂

Since this webcam works in LN₂, it can be well applied in R & D studies inside cryostats (i.e. bubble formation)! Frame rate 30 Hz

LaserDiode: ROHM RDL 65 MZT7

and **many others** work in LN_2 . Supply voltage raises from 2.2 V @ room temp to 7.4 V @ 77 K for a current of 50 mA

after being demolished carefully

Typical Rasnik image (in air)

Camera:	0: 640x480 30.0fps * No F	lip 👻 Re-Sca	an Cameras	
ater				
this comp				
15	and the second sec			
	i (packtop	🗊 Take Photo 🕒	Record Video	
Output D	irectory /home/rasnikpc/Desktop			

cam

Solution for self-bubbling: glass cylinder (Schott)

Sources of disturbances

- bubbles:
 - big bubbles, due to boiling, passing light path
 - small bubbles due to nucleation points
- density fluctuations: due to
 - thermal convection
 - induced by passing bubbles)

Possibly of no importance

Nucleation: spontaneous bubble formation

Shielding with tubes: internal reflection against inside of tube wall

apply *field stops*

Shielding with vacuum tubes or with fused silica rod: Snellius boundary crossing

Rasnik for Quarter Cryogenic Module QCM

The Stick

A Stick includes 4 items:

- a CMOS image sensor chip
- a transparent pattern forming a zone lens
- a laser diode
- a mounting interface

Conclusions

- Rasnik can operate accurately (< 1 μ m per image) in LN₂ and is applicable for the alignment of the Acc Structures and the Quads of C³
- If ASIC image sensors are applied with frame rates up to 300 Hz, Rasnik can be applied a 'seismic' monitor, measuring effectively vibrations of AccStructs.

Next: Rasnik in QCM

- At Nikhef: improve Nikhef setup:
 - apply Optical Fiber as tip of light source: no local bubbles
 - better mechanics, and smooth surfaces avoiding nucleation bubbling.
 - write paper
- design:
 - agree upon layout of 8 or 12 Sticks in QCM
 - integration of Stick base with AccStruct and Quad
 - How well should the 'Stick Offset' be known ('calibration')?
- production of 8 12 Sticks:
 - test of Sticks in (good quality) cryostat
 - verification of temperature stability of laser diode and cam: multi temperature cycles
 - optimize required shielding
- Readout:
 - SLAC should ask Microsoft for all documentation for the HD-3000 Webcam Model < 1456. Frame rate > 7 Hz possible?
 - Control + DAQ: on/off laser diodes, data sequencing, image analysis
- Start the development of a new CMOS image sensor ASIC, in collaboration with industry (Hamamatsu).