Opportunities in FEL Physics with C3 Technology

Agostino Marinelli Accelerator Research Division FEL Physics Department

Assistant Prof. Photon Science and Particle Physics and Astrophysics

- 1) Intro to FEL R&D
- 2) Opportunities for FELs driven by cold copper linac
- 3) Opportunities for the LCLS complex

- 1) Intro to FEL R&D
- 2) Opportunities for FELs driven by cold copper linac
- 3) Opportunities for the LCLS complex

Disclaimers:

I am here on behalf of myself

Discussing potential opportunities, no in-depth studies

P. Bucksbaum, Nora Berrah Physics Today 68 (7), 26-32 (2015);

Free-Electron Laser

Source: https://www.helmholtz-berlin.de

X-ray Free-Electron Lasers

First proposal: Pellegrini, C. A 4 to 0.1nm FEL based on the SLAC linac. Proc. of the Workshop on 4th Generation Light Sources (1992)

Standard X-ray FEL operation

Pulse energy ~ 0.5 to few mJ

W. Decking et. al. *Nature photonics* 14.6 (2020): 391-397.

Temporal resolution ~ tens of femtoseconds

E. Prat et al. Nature Photonics 14.12 (2020): 748-754

SASE FEL: partial temporal coherence

D. Zhu et al. Applied Physics Letters 101.3 (2012): 034103.

FEL R&D

Improving FEL facilities

FEL R&D

Improving FEL facilities

New kinds of FELs

Why an FEL Driven by Cold Copper Linac? Compactness

J B Rosenzweig et al 2020 New J. Phys. 22 093067

Credible path towards university-scale FEL system

Based on largely proven beam dynamics concepts. Undulator is a challenge

Why an FEL Driven by Cold Copper Linac? Compactness

J B Rosenzweig et al 2020 New J. Phys. 22 093067

Wang, Wentao, et al. *Nature* 595.7868 (2021): 516-520

Credible path towards university-scale FEL system

Based on largely proven beam dynamics concepts. Undulator is a challenge

Competition from laser-plasma community

10 x reduction in emittance

Operation at higher energy and/or with more compact undulators

 $\Delta t_{min} \propto \epsilon^{5/6}$

Improve pulse duration (Competition from plasma-wakefield acceleration)

Saldin, Evgeny L., Evgeny A. Schneidmiller, and Mikhail V. Yurkov.

"Design formulas for short-wavelength FELs." Optics communications 235.4-6 (2004): 415-420.

Competition from Plasma Wakefield Accelerators

B. Hidding, G. Pretzler, J. B. Rosenzweig, T. Königstein, D. Schiller,

and D. L. Bruhwiler Phys. Rev. Lett. 108, 035001

X. Xu et al. PRAB 20.11 (2017): 111303.

Competition from Plasma Wakefield Accelerators

and D. L. Bruhwiler Phys. Rev. Lett. 108, 035001

X. Xu et al. PRAB 20.11 (2017): 111303.

Beam generated at ~1-10 kA peak current at the injector!

C. Emma et al. APL Photonics 6.7 (2021)

General considerations

- C3 technology relies on proven beam dynamics concepts and highly developed technology.
- Plasma and laser wakefield pose challenges in terms of stability and reliability.

In the context of FELs

C3 probably best bet for a compact XFEL today

Plasma holds more promise for future extreme performance scenarios (e.g. single-cycle x-ray pulses)

Seeded FELs

D. Ratner et al. Phys. Rev. ST Accel. Beams 18, 030704

lin

50 -50 0 Longitudinal position (µm)

____Strong reduction with cold copper

G Marcus et al. Phys. Rev. Accel. Beams 22, 080702

Nature Photonics volume 13, pages555–561 (2019)

The LCLS Complex

Maximize utilization of superconducting linac infrastructure Undulator farm with multiplexed undulators

R&D Priorities:

- High brightness operation with cavity-based XFELs
- Beam "a la carte"
- Undulator multiplexing

MEC Upgrade

https://lcls.slac.stanford.edu/mec-u

10 Hz Petawatt laser for the Matter under Extreme Conditions LCLS lab

Strong interest in > 50 keV X-rays for high-Z materials

Potential path forward for C3 technology: Multi GeV upgrade of LCLS copper linac

Double linac energy in ~100 m (150 MV/m) 4x increase in available photon energy (might require gun upgrade...)

Opportunities for C3 technology:

- 1) Compact FEL (high-gradient acceleration)
- 2) Improved beam brightness
 - 10x better emittance -> 7x shorter pulses
 - Improved photon energy range
 - Improved peak power
- 3) Improved seeded FEL performance Reduced microbunching gain -> Extend externally seeded FELs to > 500 eV?

4) Potential opportunities for LCLS complex with MEC upgrade