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Plasma-based particle accelerators
Higher gradients (10–1000×, GV/m-scale) → even shorter/cheaper accelerators
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• Plasma wakefields:


• Driven by lasers or  
particle beams


• Accelerating, focusing


• 10–100 µm-scale (tiny!)



Plasma-based particle accelerators
Higher gradients (10–1000×, GV/m-scale) → even shorter/cheaper accelerators
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[2] Wang et al., Nature 595, 516 (2021)

[3] Pompili et al., Nature 605, 659 (2022)
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• Plasma wakefields:


• Driven by lasers or  
particle beams


• Accelerating, focusing


• 10–100 µm-scale (tiny!)

• Recent application: FELs2,3


• Why not HEP?



Fundamental challenges:  Prompting rethink of plasma accelerators
Staging (high energy unreachable in single stage) and stability

1.  Staging problem: coupling beams between  
                              plasma accelerators (stages)


• In- and out-coupling of drivers


• Refocusing beams → chromaticity  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            Particle-in-cell (PIC) simulation. Source: VisualPIC

Fundamental challenges:  Prompting rethink of plasma accelerators
Staging (high energy unreachable in single stage) and stability

1.  Staging problem: coupling beams between  
                              plasma accelerators (stages)


• In- and out-coupling of drivers


• Refocusing beams → chromaticity  

2.  Stability problem: extreme sensitivity


• µm/fs tolerances on alignment/timing


• Instabilities
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     SPARTA: 
Staging of Plasma Accelerators  
for Realizing Timely Applications

(Image of an “active” plasma lens)
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What are these concepts?



High-power 
laser 

(a0 ≫ 1) 

High-energy 
electron 
(γ0 ≫ 104)

Blackburn et al., Phys. Plasmas 25, 083108 (2018)

   LUXE Collaboration, EPJ-ST 230, 2445 (2021)

= a0 

Possible near-term application:  Strong-field QED

• Schwinger field: ~1018 V/m ⋙ high-power lasers


• Collide high-power laser with high-energy e– → boost field


• Experiments reached χ ≈ 0.3 (fraction of Schwinger field)


• χ ≈ 10–100 → lab astrophysics (e.g., surface of magnetars)


• χ ≳ 1000 → no theory! (new physics, emergent properties?)

Tech demonstrator for high energy and stability
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New concept #1:  Nonlinear plasma lenses
A new kind of plasma accelerator — solving staging

• Plasma lens = strong, compact focusing device
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New concept #1:  Nonlinear plasma lenses
A new kind of plasma accelerator — solving staging

• Plasma lens = strong, compact focusing device

• Idea: Achromatic beamline with nonlinear plasma lenses 
               → Beam quality preserved 
               → Easy in/out-coupling of drivers
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Figure 4: Proposed optics using transversely tapered plasma lenses. From Lindstrøm, to be published (2021).
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A new kind of plasma accelerator — solving staging

• Plasma lens = strong, compact focusing device

• Idea: Achromatic beamline with nonlinear plasma lenses 
               → Beam quality preserved 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Research question: 
Can we make this lens?

EXISTSDOES NOT 
EXIST (YET)



New concept #2:  Self-correction mechanisms
A new kind of plasma accelerator — solving stability

• Achromatic beamline between stages → longitudinal dispersion (R56)
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New concept #2:  Self-correction mechanisms
A new kind of plasma accelerator — solving stability

• Achromatic beamline between stages → longitudinal dispersion (R56)

• Discovery: Simulation shows feedback loop between field and beam → self-stabilization 
                  → Damps energy spread and energy offset 
                  → Greatly improves tolerances (e.g., sub-fs → 10 fs)

10 GeV

σδ = 0.50% rms

Δ = 0.00%
-4

-2

0

2

4

R
el

. e
ne

rg
y 

of
fs

et
 (%

)

R56 = 0.00 mm

-150 -100 -50
Longitudinal position (μm)

-15

-10

-5

E
z (G

V
/m

)

a
12 GeV

σδ = 1.30% rms

Δ = -0.15%

R56 = 0.00 mm

-150 -100 -50
Longitudinal position (μm)

b
12 GeV

σδ = 1.30% rms

Δ = -0.15%

R56 = 0.34 mm

-150 -100 -50
Longitudinal position (μm)

c
40 GeV

σδ = 0.42% rms

Δ = -0.08%

R56 = 0.19 mm

-150 -100 -50
Longitudinal position (μm)

d
120 GeV

σδ = 0.17% rms

Δ = -0.01%

R56 = 0.11 mm

-150 -100 -50
Longitudinal position (μm)

e
500 GeV

σδ = 0.07% rms

Δ = 0.03%

0
10
20
30

C
ur

re
nt

 (k
A

)

0

0.2

0.4

0.6

C
ha

rg
e 

de
ns

ity
 (n

C
/μ

m
/%

)

R56 = 0.05 mm

-150 -100 -50 0
Longitudinal position (μm)

f

Particle
source

 Application

Magnetic chicaneAccelerator
stage

a b c d e f

Stage 15 Stage 55 Stage 245

-150

-100

-50

0

Lo
ng

itu
di

na
l p

os
iti

on
, ξ

 (μ
m

)

0

5

10

15

20

25

30

35

B
ea

m
 c

ur
re

nt
, I

b (k
A

)

Initial profile

-150 -100 -50 0
ξ (μm)

0
10
20

I b (k
A

)

Final profile

-150 -100 -50 0
ξ (μm)

0
10
20

I b (k
A

)

50 100 150 200
Stage

-2

-1

0

1

2

R
el

. e
ne

rg
y 

(%
)

0

5

10

15

20

S
pe

ct
ra

l d
en

si
ty

 (n
C

/%
)

100 101 102

Stage

10-1

100

E
ne

rg
y 

sp
re

ad
, r

m
s 

(%
)

Simulation
Analytical model (Eq. 1)

-113.5 -113 -112.5 -112
Mean position (μm)

-0.2

-0.1

0

0.1

0.2

M
ea

n 
en

er
gy

 o
ffs

et
 (%

)

a

b c

d

e f

Lindstrøm, arXiv:2104.14460 (2021)

8



New concept #2:  Self-correction mechanisms
A new kind of plasma accelerator — solving stability

• Achromatic beamline between stages → longitudinal dispersion (R56)

• Discovery: Simulation shows feedback loop between field and beam → self-stabilization 
                  → Damps energy spread and energy offset 
                  → Greatly improves tolerances (e.g., sub-fs → 10 fs)
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Research question: 
Will this occur in a  

“real” machine?

“IDEALIZED” SIMULATION
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> Assuming C3-like beam parameters, used as drive beams for PWFA: 
> Example used: Charge 2 nC, energy 2 GeV, spaced by 3 ns — can be optimised.

A C3-based PWFA staging facility?
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> Assuming C3-like beam parameters, used as drive beams for PWFA: 
> Example used: Charge 2 nC, energy 2 GeV, spaced by 3 ns — can be optimised.

> Design requirements: 
> PWFA requirements — important to achieve 

> Minimum 10 stages (self-correction)—high energy (50 GeV), high stability 
> Acceleration gradient > ~0.5 GV/m 
> Energy efficiency > ~10% 

> Strong-field QED application requirements (TBC) — fairly relaxed 
> Emittance < ~100 mm mrad, 
> Charge > ~0.1 nC 
> Energy spread < 1% rms.

A C3-based PWFA staging facility?
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SPARTA demo machine — initial ideas and simulations

> 2 GeV drivers, 2 nC  
(C3-like parameters)


> 16 stages, ~100 m long

> Plasma density: 1015 cm-3

> Final energy: 50 GeV

> Accelerated charge: 0.2 nC

> ~20% energy efficiency
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(C3-like parameters)


> 16 stages, ~100 m long

> Plasma density: 1015 cm-3

> Final energy: 50 GeV

> Accelerated charge: 0.2 nC

> ~20% energy efficiency

> Realistic jitter:


> Temporal: 10 fs rms, 

> Alignment: 1 µm rms
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SPARTA demo machine — initial ideas and simulations

> 2 GeV drivers, 2 nC  
(C3-like parameters)


> 16 stages, ~100 m long

> Plasma density: 1015 cm-3

> Final energy: 50 GeV

> Accelerated charge: 0.2 nC

> ~20% energy efficiency

> Realistic jitter:


> Temporal: 10 fs rms, 

> Alignment: 1 µm rms


> Medium/high emittance  
(10 mm mrad), but 
negligible emittance growth
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Distributing drivers to PWFA stages with kickers

> Driver bunches must be delayed by 3 ns per stage (large chicane). 
> Train length is 16 x 3 ns = 48 ns

Application

(SFQED, FEL, etc)

Drive-beam distribution

with kickers

16 PWFA stages

C3 demonstrator 2 GeV 50 GeV

…

Time
EarlyLate

3 ns separation
Delay chicane

Drivers

Accelerated 
beam
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> Driver bunches must be delayed by 3 ns per stage (large chicane). 
> Train length is 16 x 3 ns = 48 ns

> Kicker rise time of around 1 ns.

Application

(SFQED, FEL, etc)

Drive-beam distribution

with kickers

16 PWFA stages

C3 demonstrator 2 GeV 50 GeV

…

Time
EarlyLate

3 ns separation
Delay chicane

Drivers

Accelerated 
beam



Page 1313 Feb 2024  |  C3 Workshop  |  PWFA staging: A compact energy multiplier for a C3 demonstrator?

Distributing drivers to PWFA stages with kickers

> Driver bunches must be delayed by 3 ns per stage (large chicane). 
> Train length is 16 x 3 ns = 48 ns

> Kicker rise time of around 1 ns.
> Angle required: ~30 degrees 

> Requires transverse space: ~25 meters (~1/4 of the PWFA length)

Application

(SFQED, FEL, etc)

Drive-beam distribution

with kickers

16 PWFA stages

C3 demonstrator 2 GeV 50 GeV

…

Time
EarlyLate
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Delay chicane
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> The next natural step for PWFA is a medium-scale staging demonstrator 
> Goal of the SPARTA project: make blueprints for such a machine 
> SFQED as a near-term application: needs high energy, but not high quality 

Conclusions
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> C3 technology is well suited for producing electron drivers for PWFA 

Conclusions



Page 1413 Feb 2024  |  C3 Workshop  |  PWFA staging: A compact energy multiplier for a C3 demonstrator?

> The next natural step for PWFA is a medium-scale staging demonstrator 
> Goal of the SPARTA project: make blueprints for such a machine 
> SFQED as a near-term application: needs high energy, but not high quality 

> C3 technology is well suited for producing electron drivers for PWFA 

> Could be a win–win–win situation for three communities: 
> C3 — an energy multiplier and useful/challenging application. 
> PWFA — a medium-scale facility reliably delivering high-energy electrons. 
> Applications (e.g., SFQED) — “cheap”, dedicated access to high-energy electrons.

Conclusions


