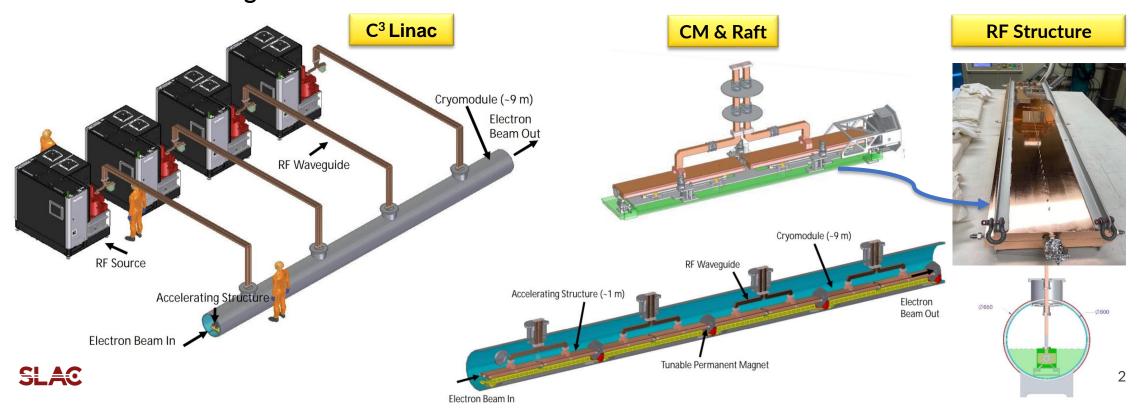
C³ LINAC Demonstration Proposal

Cool Copper Collider Workshop, SLAC


Faya Wang

13 Feb. 2024

- C³ accelerator technology: Modularized linac based on liquid N2 cooled C-band cavity.
- Cryomodules (CM)s are vacuum insulated cryostats housing 4 rafts, and has 75 cm ID and about 9 m long.
- Rafts are mechanical supporting structures consisting of 2 accelerator structures and one quadrupole magnet. They are pre-aligned at 300K to 5 microns. Each raft has mechanical actuators to align one raft to the next with 5 degrees of freedom.

RF Parameters – C³250/550 GeV

- At C³ the same LINAC can deliver 250 GeV c.o.m and 550 GeV c.o.m in 8 km
- The optimized structure can reach 300 M Ω /m at 80K.
- The accelerator beam aperture (diameter) is 5.2 mm.

• Each CM can reach up to 0.7 GeV with 4 X 50MW klystrons .

						Distance (cm)
Gradient	Power diss.	rf flat top	Pulse	Comments	Power/area	ΔT Cu-bulk
(MV/m)	(W)	(ns)	compr.		(W/cm^2)	to LN_2 (K)
70	2500	700	Ν	C^{3} -250	0.393	2.3
120	2500	250	Ν	C^{3} -550	0.393	2.3
155	3900	250	Ν	C^{3} -550 in 7 km	0.614	2.5
120	1650	250	Y	C^{3} -550	0.259	2.1

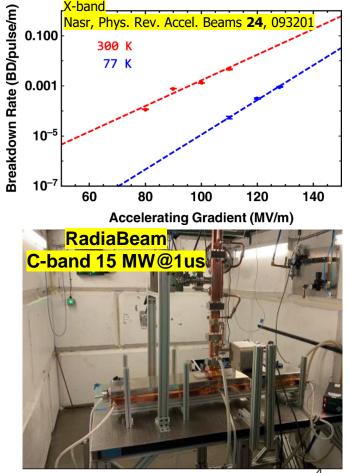
2.0

1.5

Distance (cm) 0.

0.5

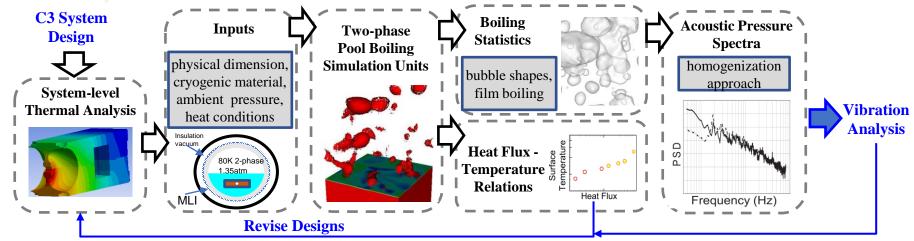
0.0

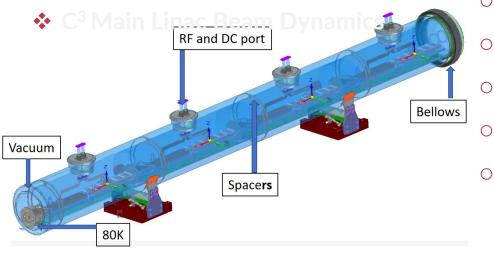

0.0 0.2 0.4 0.6 0.8

1.0

Arb. Units

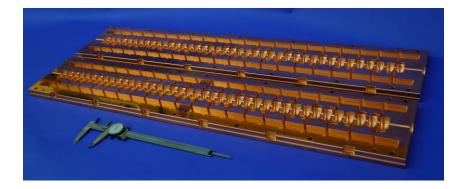
0.0

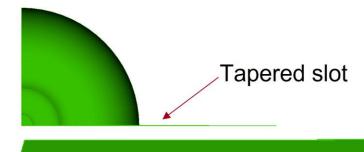

- An X-band cryogenic structure has been demonstrated at high gradient.
- The C-band has been tested at low power at SLAC and high power without beam at Radiabeam
- C³ Linac Remaining Major Risks
 - Achievable gradient and stability over C³ full electron bunch train.
 - **o** Beam emittance growth due to accelerator wakefields
 - **o** Systematic study of alignment and vibration tolerance
 - Performance of the accelerators and the cryostat at the full cryogenic liquid and gas flow rate as expected in C³.
 - \circ A reliable cost basis for extrapolation to C³ scale production.


- C³ Demo will focus on the 5 thrusts:
 - Collider Cryogenics Design Study
 - CryoModule
 - Accelerator Structure
 - Beam Dynamics Experimental Study
 - C³ Main Linac Beam Dynamics Simulation Study

- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics
- C³ Main Linac Beam Dynamics

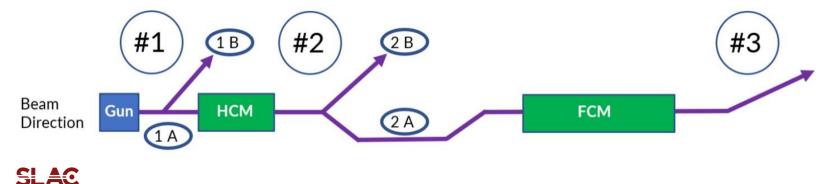
- Vibrations due to boiling of LN
- Large scale simulation setups (from 100s to 1000 meters)
- Optimizing CM and cold mass design to avoid the liquid surface turbulent flow
- Engineering procedures to eliminate possible problems from linac warm-up and cold-down process
- Instrumentation needs


- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics


- Adequate stability of the quadrupoles and accelerators during powered operation and full C³ cryogenics fluid flow rate (with margins)
- Adequate range, precision and bandwidth of the raft positioning systems
- Full **C**³ cryogenic flow rate benchmarking with simulation
- In-situ CM vibration measurement
- In-situ pre-beam alignment \leq 500 um
- Tunable permanent quadrupole magnets
- Waveguide transitions into the Cryomodule

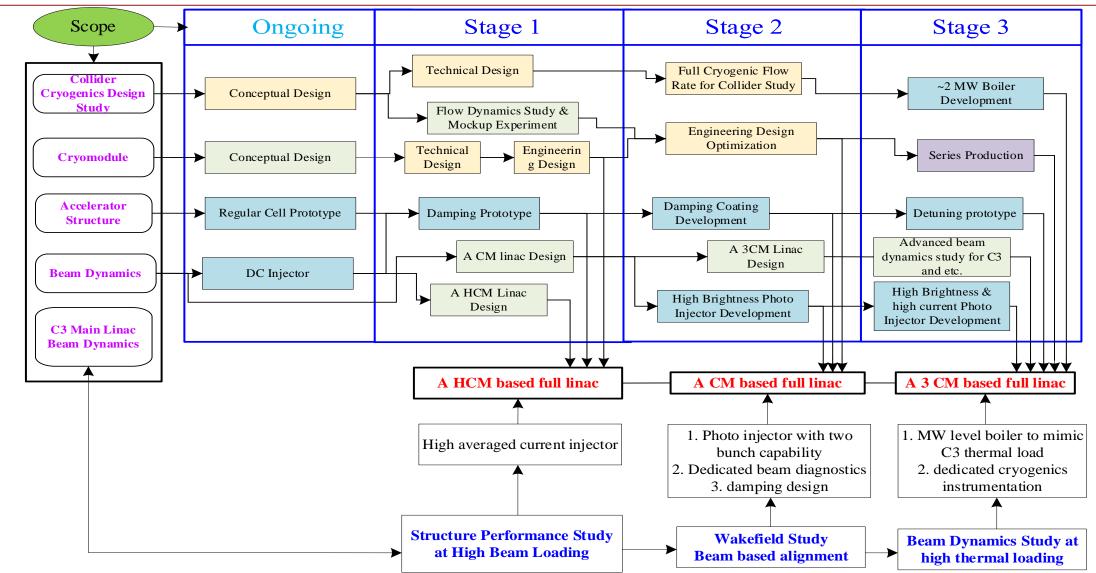
- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics
- ✤ C³ Main Linac Beam Dynamics

- Achievable gradient and gradient stability at the C³ equivalent beam loading
- HOM damping design and fabrication
- Integrated beam position monitor for structure alignment
- Optimization of the mechanical design for structure fabrication and tuning
- HOM detuning design

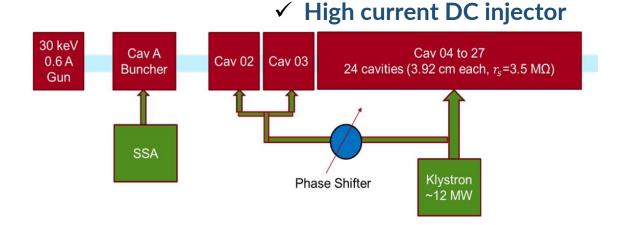


C³ Demo will focus on the 5 thrusts:

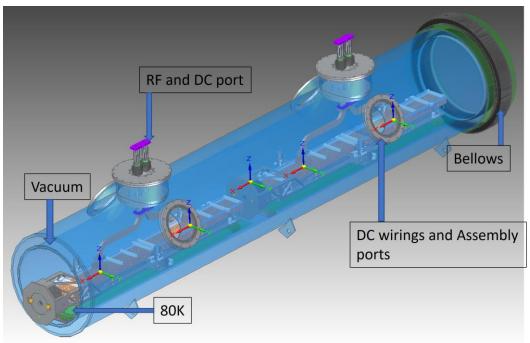
- Collider Cryogenics Design Study
- CryoModule
- **
- ***** Beam Dynamics
- ✤ C³ Main Linac Beam Dynamics


- Measure beam properties and validate wakefield model Ο with simulations.
- Begin development of feedback loops for minimization of Ο emittance growth.
- Develop systematic beam-based diagnostics for different Ο stages of the Demonstrator.

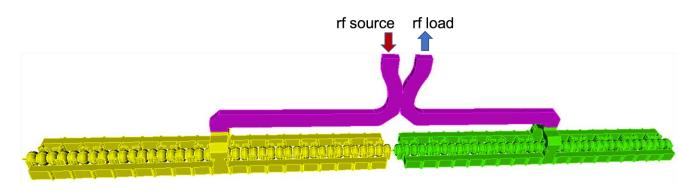
9


- Collider Cryogenics Design Study
- CryoModule
- ✤ Accelerator Structure
- **&** Beam Dynamics
- **C³ Main Linac Beam Dynamics**

- Perform emittance preservation simulation studies to determine alignment and vibration tolerances
- Investigation and optimization of lattice design, BNS damping, beam based alignment (1-1 steering, dispersion free steering, and wakefield corrections) ect.

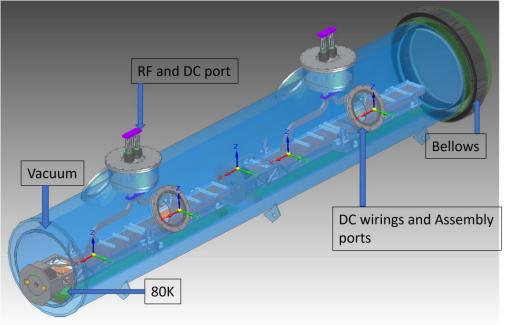


- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - **Demonstrate the accelerator structure at the full C³ equivalent beam loading:**
 - Unloaded and loaded at 70 MeV/m and 700 ns with 190 mA C³250
 - Unloaded and loaded gradient of 120 MeV/m and 250 ns with 300 mA C³550

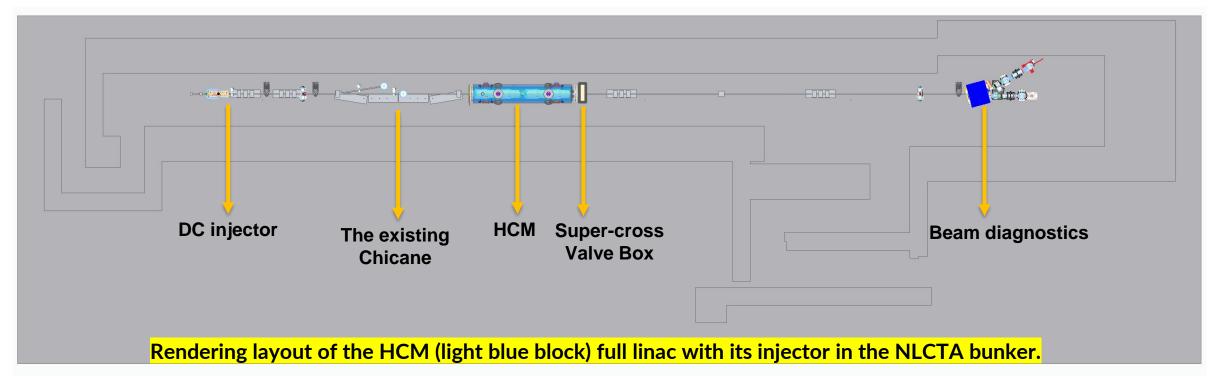

- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.

✓ HCM Linac

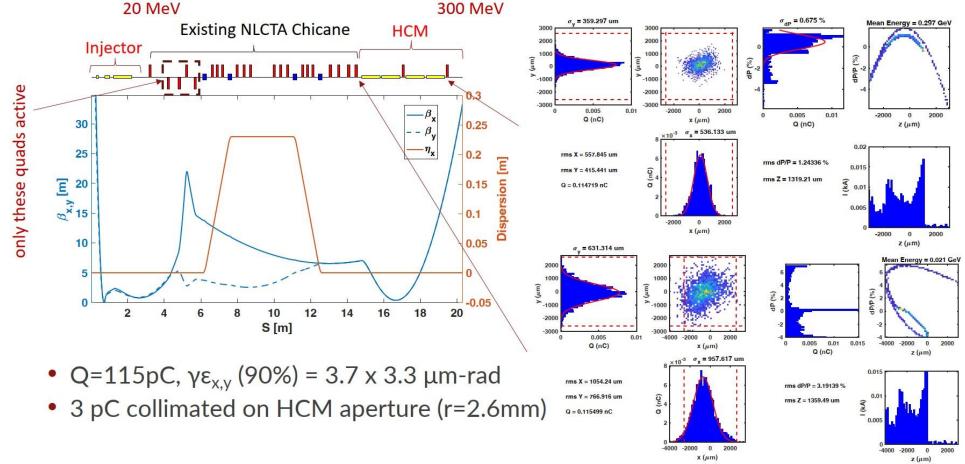
- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.

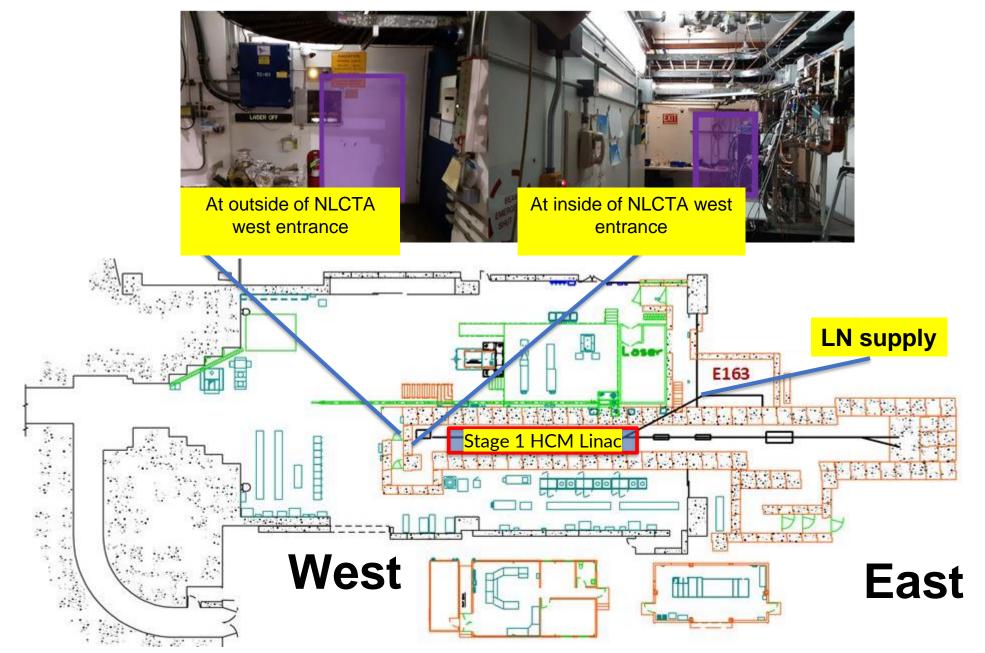


- $\circ~$ 2x50 MW C-band RF station needed to be developed.
- About 10% rf transmission loss


SLAC

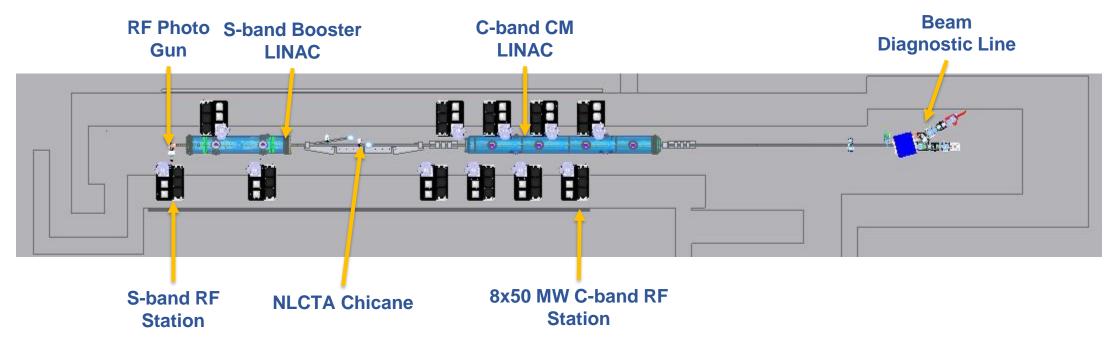
- $\circ~$ With structure match to 43% beam loading
 - 4 structure at 78 MeV/m with no beam
 - 2 structure at 111 MeV/m without beam and 90 MeV/m with 190 mA (C3-250)
 - 1 structure at 157 MeV/m without beam and 125 MeV/m with 300 mA (C3-550)


✓ HCM Linac

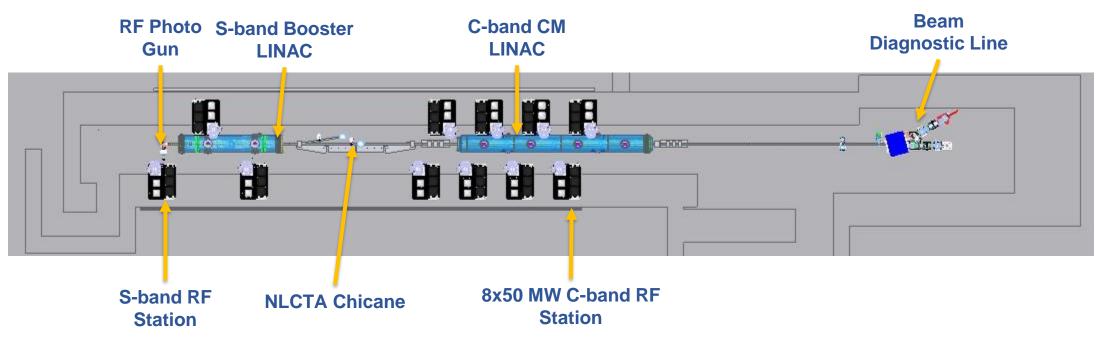

- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading at SLAC NLCTA.
 - 2x50 MW C-band rf stations will be developed by repurposing an exiting X-band station modulator.
 - The existing S-band station in NLCTA will be used to power the injector.

- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading at SLAC NLCTA.

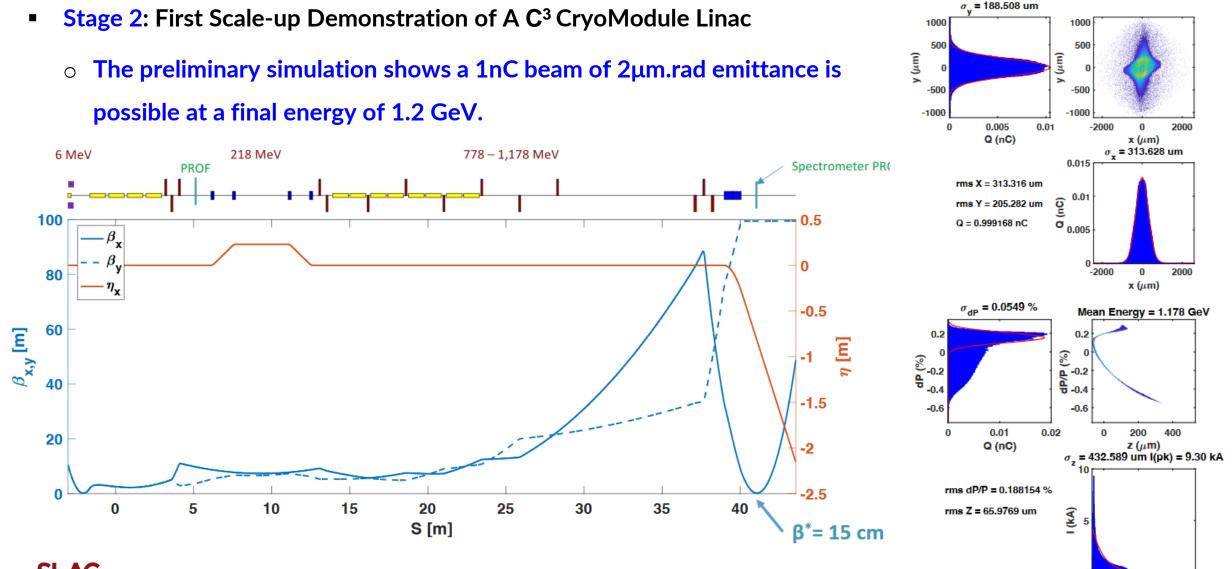
• Stage 1 will use NLCTA as it is.



SLAC

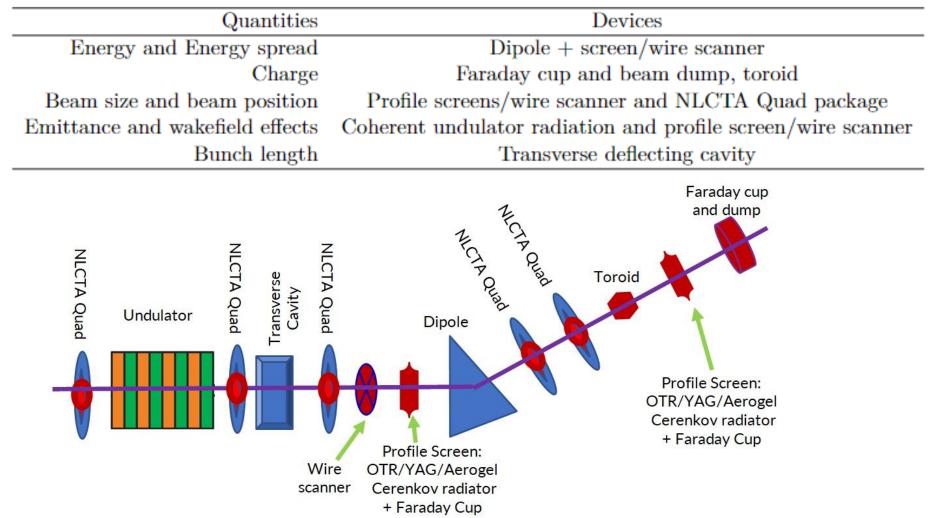

- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - A high brightness photo injector with at least two bunches and various space
 - A large aperture S-band booster linac
 - A full C³ CM Linac.

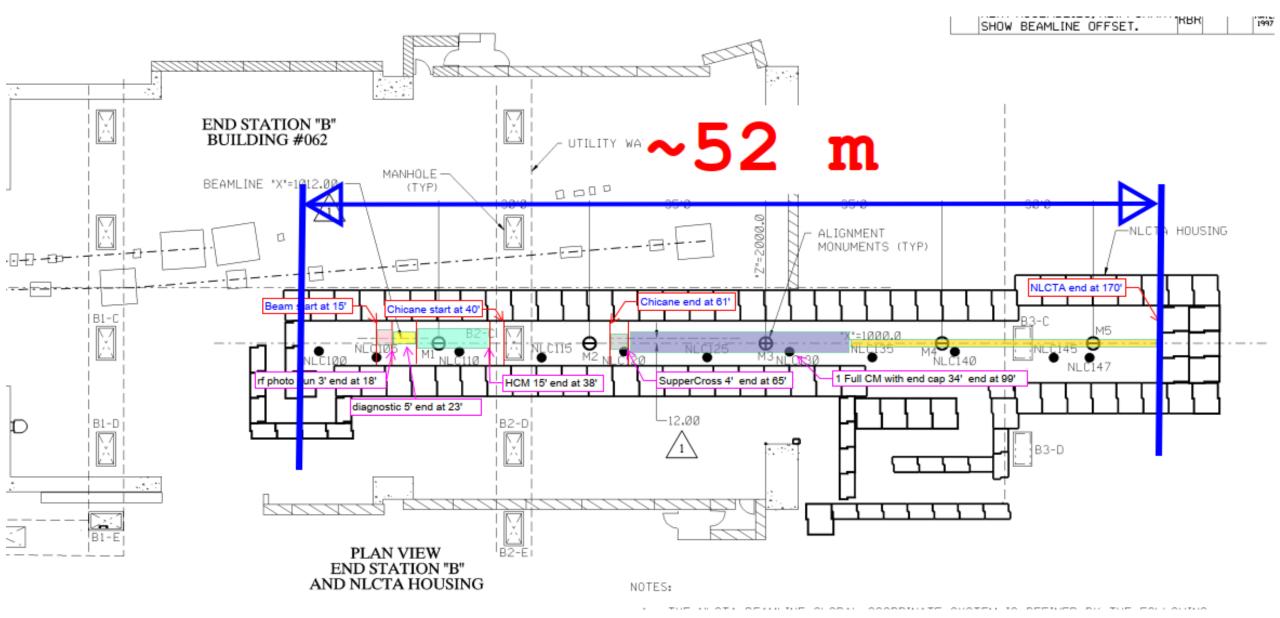
- Production of the cryomodule assembly with in-situ pre-beam alignment \leq 500 μ m
- Demonstration of the acceleration structure in the full CM LINAC reaching unloaded gradient of 155 MeV/m at 250 ns
- Development of high brightness RF photo injector with an LCLS-like S-band RF gun and an S-band booster LINAC re-using the Stage 1 HCM cryostat
- Evaluation of cryomodule LINAC beam performance in the presence of wakefields, and benchmarking with the beam simulation


- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - A high brightness photo injector with at least two bunches and variable bunch space
 - A large aperture S-band booster linac: repurpose the stage 1 half CM with 4x1m S-band structures
 - A full C³ CM Linac.

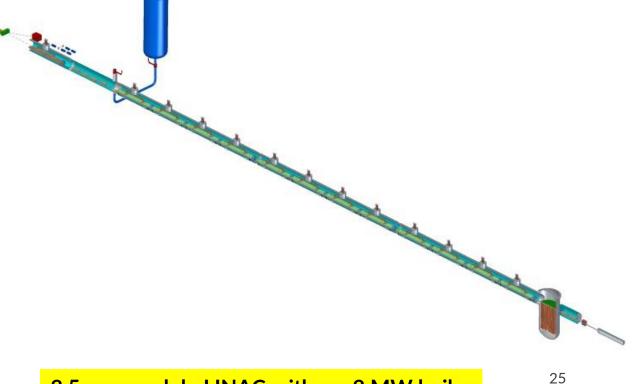
- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - 8x50 MW C-band RF station will be built.
 - With zero beam loading (single electron bunch) and about 10% RF transmission loss
 - 1 klystron per structure: 8 structures at 113 MeV/m

- 2 klystrons per structure: 4 structures at 160 MeV/m


200 400 z (μm)


0

- Stage 2: First Scale-up Demonstration of a Full C³ CryoModule
 - **o** Beam diagnostics at the LINAC end: Long range wakefield and longitudinal short range wakefield


- **Stage 2:** First Scale-up Demonstration of a Full C³ CryoModule
 - Beam diagnostics at the LINAC end: Long range wakefield and longitudinal short range wakefield

SLAC

- Stage 3: Integrated Demonstration Towards the C³ main LINAC
 - Cryogenics performance study at the C³ full flow rate
 - Mapping out of transverse short range wakefield
 - Structure and magnet pre-beam alignment in each CM as well as between through multiple CMs

- Stage 3: Integrated Demonstration Towards the C³ main LINAC
 - Cryogenics performance study at the C³ full flow rate
 - Mapping out of transverse short range wakefield
 - Structure and magnet pre-beam alignment in each CM as well as between through multiple CMs

- 3 CM LINAC at 70 MeV/m
- Injected bunch of 1nC, 1.5 umrad, and 200 MeV
- Final beam energy 1.7 GeV

Bunch length (rms, μ m)	Off set (μm)	Relative emittance growth $(\%)$
556	500	15
1112	200	13

- Stage 3: Integrated Demonstration Towards the C³ main LINAC
 - The full stage 3 facility requires ~ 70m bunker.
 - The NLCTA will have to be extended by ~ 20m to host the full stage 3 LINAC.

Site	pros	cons		
NLCTA at	continuation of	needs extension		
SLAC	Stage 1&2	of current bunker		
IR12 at	ample space of exisitng	these infrastructures		
SLAC	tunnel with shielded	were de-actived since		
	large high bay area	the end of BarBar program.		
	and control room	Will require investment		
	on either side	to re-establish		
FAST at	well established operational	difficult to leverage		
Fermilab	accelerator infrastructure	the investment of		
	including cryogenic system	Stage 1 and Stage 2		
LINAC Extension	ample footprint with	possibility for		
Area (LEA) at	reasonable infrastructure	PWFA R&D is		
ANL	help to deep en synergy with AWA and $\ensuremath{\operatorname{APS}}$	not yet clear		

Stage 1: ½ CM	

- ✓ Medical: VHEE therapy
- ✓ Compact high energy (100s keV to 1MeV) Compton source
- ✓ Lower energy injector for booster ring
- ✓ High brightness injector feasibility

Stage 1: ½ CM

SLAC

A half CM with 2x50MW klystrons – 0.32 GeV over 5 m

|--|--|--|--|

Full energy linac injector for storage ring.

Stage 3: 3½ CM A 3 CM LINAC ~ 2.7 GeV reach over about 30 meters

Independent energy tunning of beamlines in an x-ray FEL undulator farm
 Compact and cost-effective x-ray FEL.

Stage 2: 1½ CM

- A single CM linac with 8x50 MW klystrons of ~ 0.9 GeV over ~9 m
 - ✓ Medical: VHEE therapy
 - ✓ Compact high energy (100s keV to 1MeV) Compton source
 - ✓ Lower energy injector for booster ring
 - ✓ High brightness injector feasibility

Stage 1: ½ CM

SLAC

A half CM with 2x50MW klystrons – 0.32 GeV over 5 m

	 Advanced accelerator concept study like staging PWFA
	✓ Full energy linac injector for storage ring like CHESS injector (6GeV)
Stage 3: 3½ CM	 A 3 CM LINAC ~ 2.7 GeV reach over about 30 meters
	Independent energy tunning of beamlines in an x-ray FEL undulator farm
	✓ Compact and cost-effective x-ray FEL.
Stage 2: 1½ CM	 A single CM linac with 8x50 MW klystrons of ~ 0.9 GeV over ~9 m
	✓ Medical: VHEE therapy
	 Compact high energy (100s keV to 1MeV) Compton source
	 Lower energy injector for booster ring
	 High brightness injector feasibility
Stage 1: ½ CM	A half CM with 2x50MW klystrons – 0.32 GeV over 5 m
SLAC	31

C³Demo Timeline

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Stage 1						
HCM development						
RF stations						
Injector						
Diagnostic beamline						
Control						
Facility preparation						
Installation						
Cryogenics						
HCM linac beam based measurement						
Stage 2						
NLCTA Support						
photo Injector						
Full CM						
Chiane and end linac beamline						
Control						
Full Linac beam based measurement						
Stage 3						

- The overall objective of this proposal is to mature the RF and cryomodule technology and complete the beam dynamics investigation for the C³ main LINAC.
 - design and analyze the main LINAC cryogenics
 - complete the design and construction of the cryomodules
 - demonstrate the accelerating structure with beam and wakefield damping
 - investigate the C³ main LINAC machine and beam dynamics performance.
- **The C³ Demonstration R&D Plan will**
 - provide key inputs for the conceptual design of the C³ Higgs Factory.
 - open up significant new scientific and technical opportunities based on the C³ accelerator technology.

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Thank you so much!

Questions?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT