CPAD RDC4 BlueSky Initiative from SCIPP

Matthew Gignac, on behalf of the SCIPP group

October 16th 2023

Introduction

- UC Santa Cruz has been working on ASICs for readout of fast signals generated by AC-LGADs silicon sensors
- Overarching design goals:
 - **Fast timing** (Jitter < 10ps)
 - Low-power consumption, (<1mW per channel)
- Recent efforts have targeted applications at the EIC, but design goals are general enough for blue-sky R&D efforts

Institution	Name	Technology	Output	# of Chan	Funding	Specific Goals	Status
INFN Torino	FAST	110 nm CMOS	Waveform & TDC	20	INFN	Large Capacitance TDC	Testing
NALU Scientific	HPSoC*	65 nm CMOS	Waveform	5 (Prototype) > 81 (Final)	DoE SBIR	Digital back-end	V2 ready
Anadyne Inc	ASROC**	Si-Ge BiCMOS	Discrim.	16	DoE SBIR	Low Power	Testing

- The HPSoC design implements signal pre-amplification along with **full** waveform sampling and digitization in an ultra-small area package size compatible with small-pitch sensors
- Waveform digitization **promising technique** to reduce the noise from various sources of electronic noise to achieve timing resolution <10ps

Parameter	Specification
Channel no.	miniHPSoC chip (this proposal): 9
	Full chip (post FY23): ~100 (pitch ~300µm)
Process	65nm CMOS
Sample rate	10 GSa/s
Bandwidth	2 GHz
No. bits	10
Supply Voltage	1.0V (2.5V for digital I/O)
Timing accuracy	5 ps
Front-End stage	Embedded TIA
Buffer length/channel	256 samples
Power/channel	<2mW

HPSoCv2: Preliminary results

- Status: HPSoCv2 chips in hand, corresponding readout board designed & fabricated, and front-end characterization has started
- Calibration pulses injected to characterize the TIA
 - Observe rise time in the range of 600-700 ps \bigcirc
 - Improved gain compared to v1 chip 0
- Studies ongoing with ASIC+sensor+betasource

AS-ROC

- Chip developed together with Anadyne Inc. & Joey DeWitt using Tower Semiconductor Silicon Germanium (SiGe) BiCMOS technology
 - Target very low power consumption (<1mW/ch)
 - Current prototype with 16 channels output
 - Both analog and discriminator output
- Expected jitter <10ps from simulations
- Readout board developed by SCIPP team

IIC SANTA CRII7

UC SANTA CRII7

AS-ROS: Status

- Characterization of **analog** and digital parts well advanced
 - Good pulse shape and excellent gain for most of the dynamic range
 - Rise time from 700 ps 2ns at saturation point

AS-ROS: Status

- Characterization of analog and **digital** parts well advanced
- Discriminator output functioning as expected, with jitter < 10ps
 - Discriminator output is a 1.5V step function with rise time < 1ns
 - \circ Width proportional to pulse maximum \rightarrow can be used to correct time walk

- The UC Santa Cruz group is interested in continuing R&D on several promising technologies to offer low-power & excellent timing resolution for the readout of ultra-fast silicon detectors
- Two promising chips have been investigated:
 - HPSoC: implemented full waveform digitization, promise to achieve <10ps time resolution
 - AS-ROC: SiGe BiCOMS technology, promise for extremely low power consumption

UCSC ultra-fast sensor group

- Prof. Bruce Schumm
- Prof. emer. Abraham Seiden
- Prof. emer. Hartmut Sadrozinski
- Asst. Adj. Prof. Matthew Gignac
- Asst. Project Scientist Simone Mazza
- Postdoc Mohammad Nizam
- Postdoc Jennifer Ott
- Senior Specialist Taylor Shin
- Junior Specialist Noah Nagel
- (Senior Specialists Max Wilder, Forest Martinez- Mckinney)
- Graduate student Yuzhan Zhao
- Graduate student Rene Padilla
- Graduate student Adam Molnar

III: SHNIH I:RII/