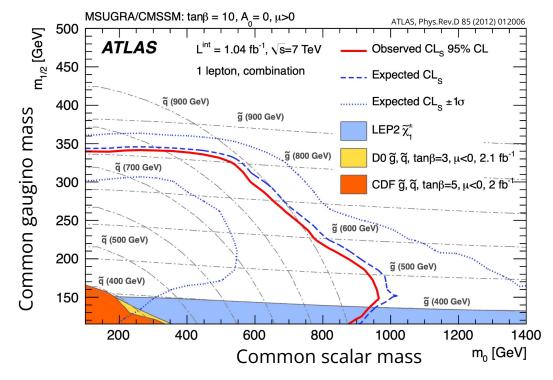
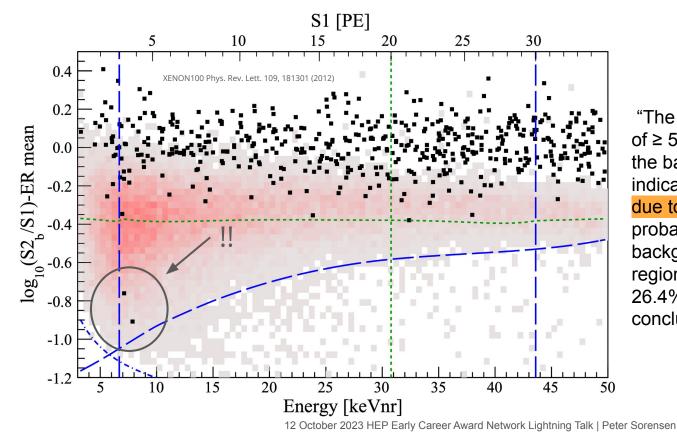


What are we looking for with LZ and LZ-like instruments?

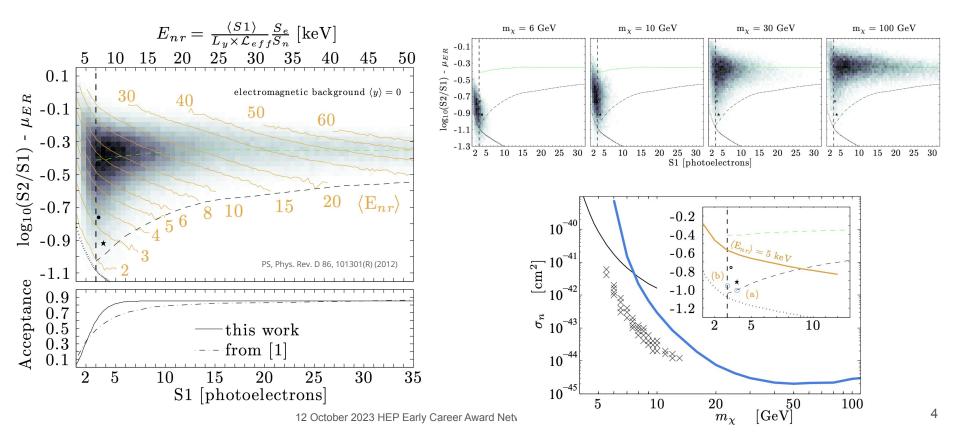
- a. "A specific model! e.g. a new weak scale particle"
- b. "A surprise"



Summer of 2012, dark matter direct detection malaise


WIMPs excluded up to ~100 GeV

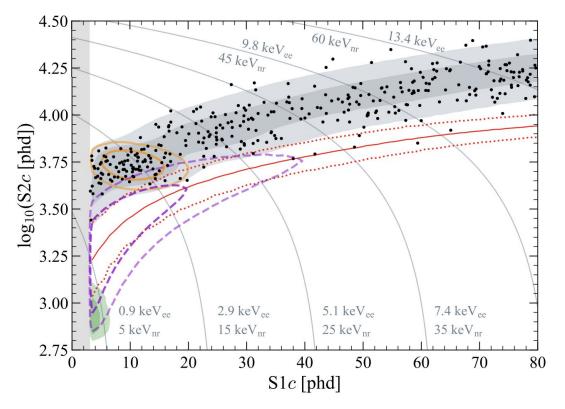
2012, Surprise!


"The PL analysis yields a p-value of \geq 5% for all WIMP masses for the background-only hypothesis indicating that there is no excess due to a dark matter signal. The probability that the expected background in the benchmark region fluctuates to 2 events is 26.4% and confirms this conclusion." – XENON100

3

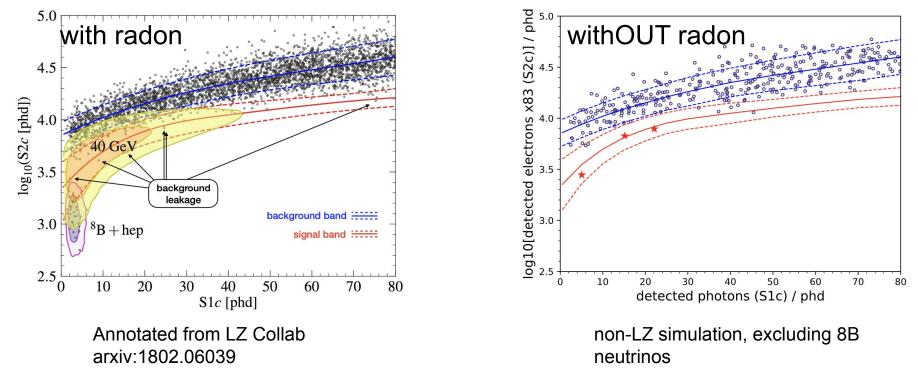
I disagreed – the excess 2 events look like ~10 GeV dark matter!

Background obscures possibility of surprise


LZ Backgrounds paper arXiv:2211.17120, Table VI

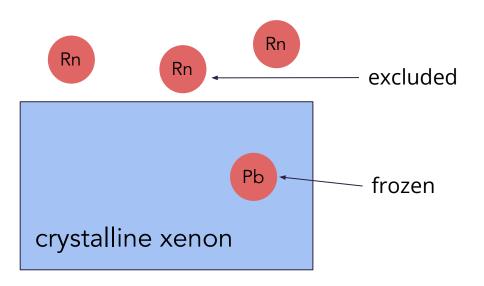
Source	Expected Events	Fit Result	
214 Pb	164 ± 35	-	Tagging can help, crystaLiZe can solve
212 Pb	18 ± 5	=	
85 Kr	32 ± 5	-	\$, time and SLAC can solve
Det. ER	1.4 ± 0.4	-	
β decays + Det. ER	215 ± 36	222 ± 16	
$ u { m ER} $	27.1 ± 1.6	27.2 ± 1.6	Interesting + others can measure
127 Xe	9.2 ± 0.8	9.3 ± 0.8	time can solve
124 Xe	5.0 ± 1.4	5.2 ± 1.4	
¹³⁶ Xe	15.1 ± 2.4	15.2 ± 2.4	\$ can solve (give it to nEXO :)
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01	
recidentalis	events 1.2 ± 0.3	1.2 ± 0.3	_< Detector design, clever selection can solve
Subtotal	273 ± 36	280 ± 16	
$^{37}\mathrm{Ar}$	[0, 288]	$52.5\substack{+9.6 \\ -8.9}$	
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$	
$30{ m GeV/c^2}~{ m WIMP}$	_	$0.0^{+0.6}$	
Total	-	333 ± 17	
			— 5

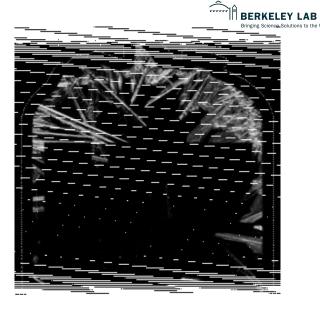
LZ First Results



¹² October 2023 HEP Early Career Award Network Lightning Talk | Peter Sorensen

LZ full exposure 1000 days x 5.6 tonnes PROJECTIONS

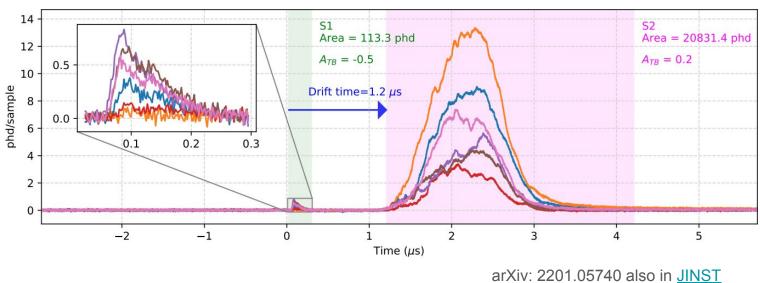




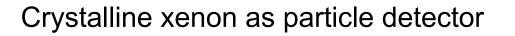
Towards radon-free: "crystaLiZe" R&D @LBL

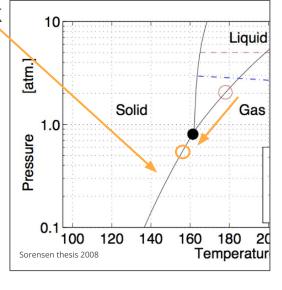
liquid/vapor xenon TPC

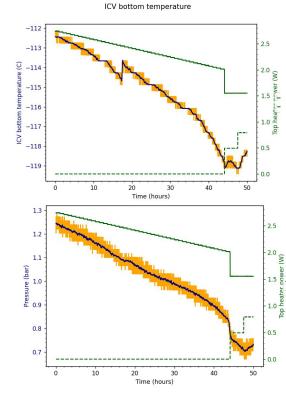
 ⇒ crystal/vapor xenon TPC



"crystaLiZe" LZ upgrade concept


Crystalline xenon as particle detector – it works!

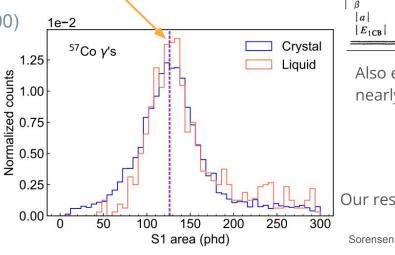

observe S1 and S2 in crystal/vapor TPC, just as in liquid/vapor TPC



- Walk down phase boundary ~20 K
- Same electron and photon yields (photon verified)
- Easier e- emission into vapor
- Mobility increase x2
- Density increase x1.17
- Radon exclusion (> x1000)

Freezing from bottom to top

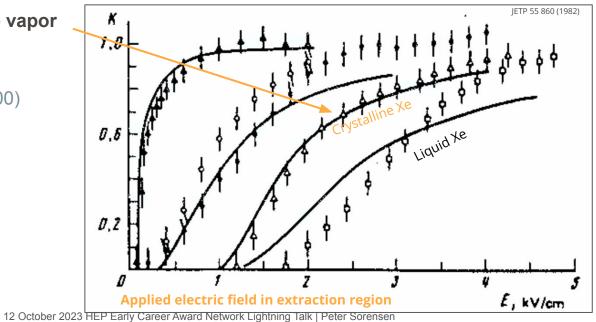
Phys Rev B 10 4464 (1974)


TABLE II. Comparison of transport parameters in solid and liquid xenon. Values of other data used in the calculations are also quoted.

	Solid T = 161.2 °K	Liquid T = 163 °K	Unit
E _C	9.272	9.22	eV
E_G G	1.063	1.084	eV
€∞	2.00 ^a	1.85 ^b	•••
<i>m</i> *	0.31 ^c	0.27	electron mass
μ	4.5×10^{3} d	$2.2 \times 10^{3} e$	$cm^2 V^{-1} sec^{-1}$
T	8.0×10^{-13}	3.4×10^{-13}	sec
L^{τ_p}	7.1×10^{-6}	3.3×10^{-6}	cm
β	1.36×10 ^{10 f}	0.58×10 ¹⁰ g	dyn/cm ²
a	3.8×10^{-9}	4.2×10^{-9}	cm
$ E_{1CB} $	0.93	1.01	eV

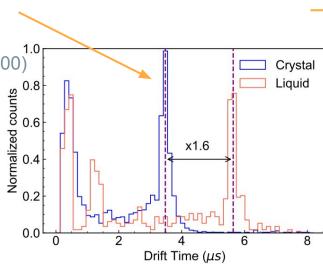
Also expected theoretically based on nearly identical E_{G} in liquid/solid

• Walk down phase boundary ~20 K


- Same electron and photon yields (photon verified)
- Easier e- emission into vapor
- Mobility increase x2
- Density increase x1.17
- Radon exclusion (> x1000)

- Walk down phase boundary ~20 K
- Same electron and photon yields (photon verified)
- Easier e- emission into vapor
- Mobility increase x2
- Density increase x1.17
- Radon exclusion (> x1000)

Phys Rev B 10 4464 (1974)


TABLE II. Comparison of transport parameters in solid and liquid xenon. Values of other data used in the calculations are also quoted.

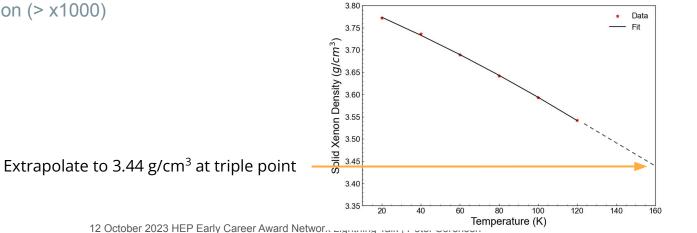
	Solid T = 161.2 °K	Liquid T = 163 °K	Unit
E _G	9.272	9.22	eV
E _G G	1.063	1.084	eV
€∞	2.00 a	1.85 ^b	•••
<i>m</i> *	0.31 ^c	0.27	electron mass
μ	4.5×10^{3} d	$2.2 \times 10^{3} e$	$cm^2 V^{-1} sec^{-1}$
T	8.0×10^{-13}	3.4×10^{-13}	sec
L^{τ_p}	7.1 $\times 10^{-6}$	3.3×10^{-6}	cm
β	1.36×10 ^{10 f}	0.58×10 ¹⁰ g	dyn/cm ²
a	3.8×10^{-9}	4.2×10^{-9}	cm
$ E_{1CB} $	0.93	1.01	eV

Our result arXiv:2201.05740 from 210Po alphas on the cathode shows x1.6, but is consistent with x2 (uncertainty in crystal surface z position)

• Walk down phase boundary ~20 K

- Same electron and photon yields (photon verified)
- Easier e- emission into vapor
- Mobility increase x2
- Density increase x1.17
- Radon exclusion (> x1000)

12 October 2023 HEP Early Career Award Network Lightning Talk | Peter Sorensen

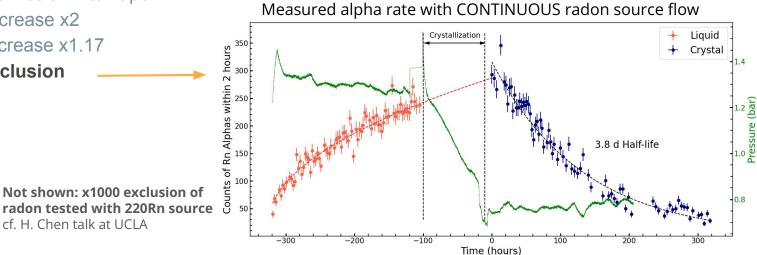


- Walk down phase boundary ~20 K
- Same electron and photon yields (photon verified)
- Easier e- emission into vapor
- Mobility increase x2
- Density increase x1.17
- Radon exclusion (> x1000)

A. J. Eatwell & B. L. Smith (1961) Density and expansivity of solid xenon, Philosophical Magazine, 6:63, 461-46

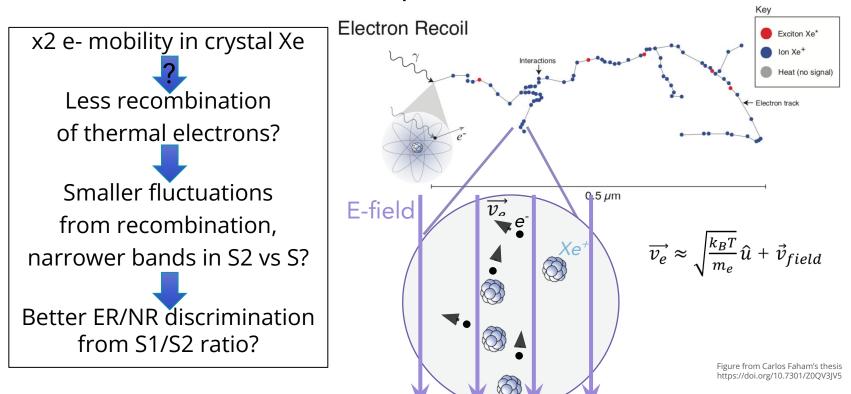
Table 1. Density (g cm⁻³)

<i>Т</i> (°к)	20	40	60	80	100	120
Argon	1.764	1.737	1.691	1.636		
Krypton	3.078	3.040	2.988	2.926		
Xenon	3.772	3.736	3.689	3.642	3.593	3.545

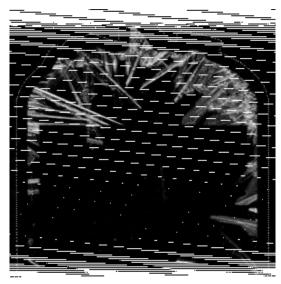


- Walk down phase boundary ~20 K
- Same electron and photon yields (photon verified)

cf. H. Chen talk at UCLA


- Easier e- emission into vapor
- Mobility increase x2
- Density increase x1.17
- **Radon exclusion**

Next: ER/NR discrimination improvement? TBD!



Crystalline xenon TPC – open questions

- 1. Does it scale gracefully from grams to tonnes?
 - a. Need: a bigger test bed. UT Austin planning ~10 kg (Kravitz)
- 2. Are crystalline defects an issue?
 - a. Preliminarily, no
 - b. Need: bigger test bed to explore 3D response.
- 3. How can the thermal model/implementation be improved?
 - a. Example: does the cathode connection cable locally melt the ice? Do asymmetries in phi affect the surface?
- 4. What does the ice surface look like? Does it matter?
 - a. Need: camera, boroscope, light source
 - b. S2 response (not at the same time)
- 5. What about overall crystal neutrality or "charging up" ?
 - a. Super-interesting question. We see some preliminary evidence that the S2 response can degrade over time. Yet the e- and h+ mobility are larger in crystal than in liquid. Mystery!
- 6. Can one operate crystalline xenon at mK temperatures with TES readout?
- 7. Is the discrimination the same or better in crystal xenon?
 - a. We hope to address this in the final year of ECA
- 8. Do PMTs work in crystal? We have been using SiPMs...
- 9. Is crystaLiZe compatible with HydroX (hydrogen doping of xenon)?
 - a. UCSB working on HydroX, LBL (Manalaysay) has a new LDRD on this topic
- 10. Would we really freeze LZ or XENONnT?

