
NEW RESULT FROM THE MUON g-2 EXPERIMENT AT FERMILAB

PETER WINTER Muon g-2 Co-Spokesperson

Intensity Frontier Group Leader High Energy Physics Division Argonne National Laboratory

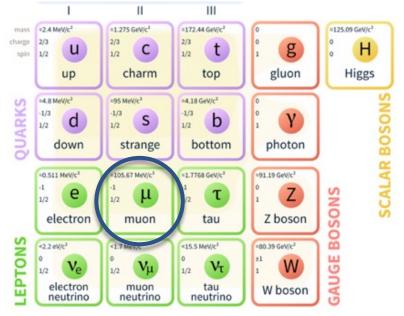
MUON g-2 TWO YEARS AGO IN 2021

OUTLINE

- Who am I?
- Short intro to Muon g-2
- My path to the ECA and lessons learned
- Muon g-2: Status and outlook
- Rare Processes and Precision Frontier: A personal view

WHO AM I?

- Studied physics at the university of Bonn, Germany
- PhD at Research Center of Jülich, Germany


- PostDoc on muon precision experiments (MuLan, MuCap, MuSun @ PSI):
 - 2005-2010: University of Illinois at Champaign-Urbana
 - 2010-2012: University of Washington
- ANL staff scientist since 2012 with research focus on Muon g-2:
 - Intensity Frontier Group Leader since 2019
 - Collaboration member of Muon g-2, mu2e, and DUNE

SHORT INTRO TO MUON g-2

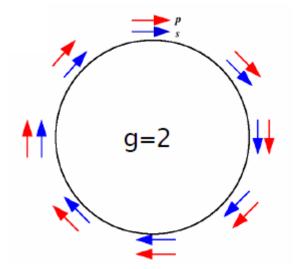
SETTING THE SCENES FOR MUON g-2

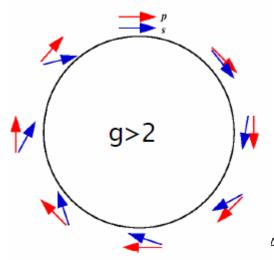
- 2nd generation elementary particle
- Big cousin of the electron:
 - 200x more massive
 - **Unstable**: decays to e^- , $\overline{v_e}$, v_{μ}
- 2.2 µs lifetime: easy to make and manipulate at accelerators

"Goldilocks" Mass:

- Heavier than electron so more sensitive to virtual particles
- Lighter than pion so no hadronic decays
- Have a property called **spin** that rotates in a magnetic field
- Self-analyzing decay (e.g. muon spin direction at decay links to decay electron direction)

MUONS IN A STORAGE RING (NO E FIELD YET)

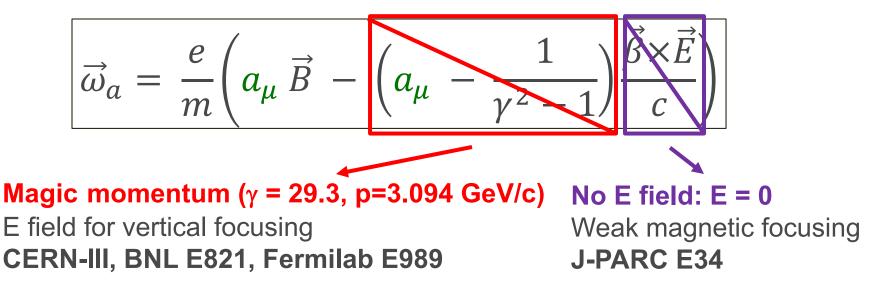

- Cyclotron frequency: $\omega_c = \frac{e}{m \gamma} B$
- Spin precession frequency:


$$\omega_{S} = \frac{e}{m \gamma} B (1 + \gamma a_{\mu})$$

Larmor + Thomas precession

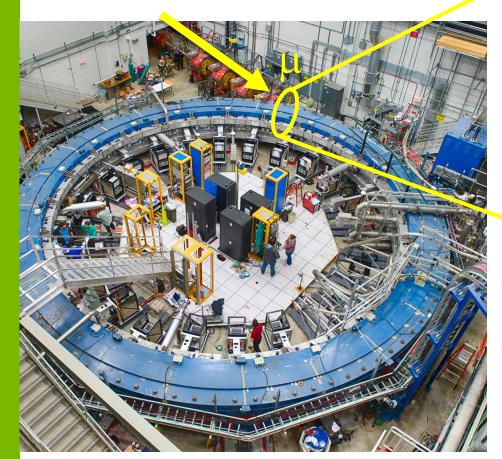
$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_c = \frac{e}{m} \left(a_\mu \, \vec{B} \, \right)$$

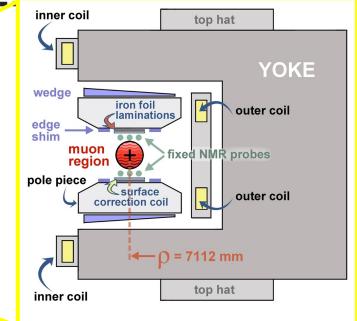
7



MUONS IN B AND E FIELD

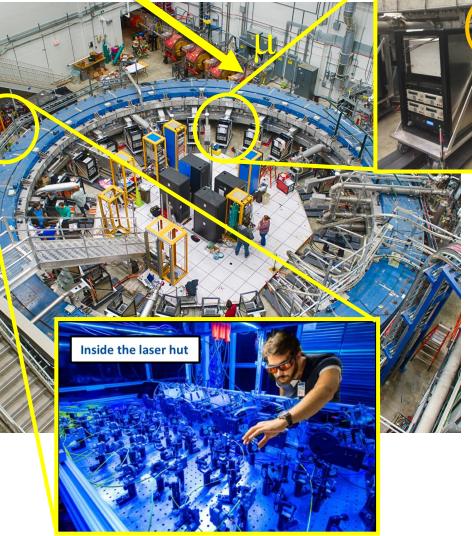
• In presence of additional E-field (neglecting β ·B and EDM terms):




$$\omega_a = e/m a_\mu B$$

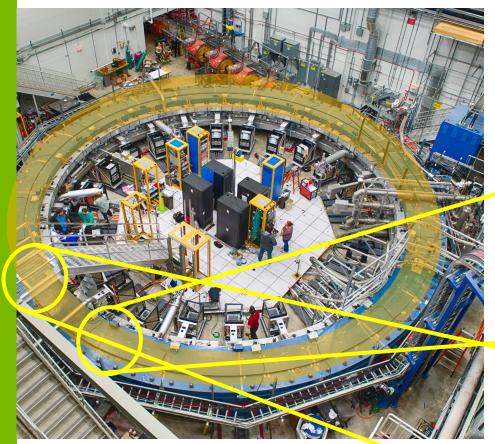
- Measuring the anomalous moment \mathbf{a}_{μ} requires both
 - 1. the spin precession frequency ω_a
 - 2. the magnetic field **B**

MUON INJECTION & STORAGE STORAGE RING MAGNET



- Superconducting coils, C-shaped yoke, 1.45T field strength
- Shim toolkit:
 - 48 top / bottom hats to tune dipole
 - 800 wedge shims to tune dipole
 - 9000 iron foils to fine tune field
 - 200 tunable coils for higher multipoles

MEASURING THE MUON SPIN PRECESSION: CALORIMETER & LASER CALIBRATION



- 24 calorimeter stations detect the muon decay positrons:
 - PbF₂ crystals with SiPM readout
- Laser calibration system:
 - Gain corrected to 10-4/h

MEASURING THE MAGNETIC FIELD: NUCLEAR MAGNETIC RESONANCE PROBES

• 378 fixed NMR probes to track field

 One trolley with 17 NMR probes to map the field in muon storage region

 Water-based calibration probe to provide an absolute reference

MY PATH TO THE ECA AND LESSONS LEARNED

- Just started at Argonne as the only staff on Muon g-2
- Muon g-2 Project had tasked me to take on the Slow Control for the experiment
- EC proposal: Slow control for Muon g-2

- Just started at Argonne as the only staff on Muon g-2
- Muon g-2 Project had tasked me to take on the Slow Control for the experiment
- EC proposal: Slow control for Muon g-2
- Outcome:

- Just started at Argonne as the only staff on Muon g-2
- Muon g-2 Project had tasked me to take on the Slow Control for the experiment
- EC proposal: Slow control for Muon g-2
- Outcome:

- Not really innovative
- Why wouldn't the Project pay for it

- Just started at Argonne as the only staff on Muon g-2
- Muon g-2 Project had tasked me to take on the Slow Control for the experiment
- EC proposal: Slow control for Muon g-2
- Outcome:

- Not really innovative
- Why wouldn't the Project pay for it

Lesson 1: Did not know the EC proposal process well and did not have much advice since only one on g-2 at ANL

FAST FORWARD TO 2013: MY 2ND ATTEMPT

- Muon g-2 needed more people for the magnetic field measurement
- I joined and was asked to upgrade the existing, crucial trolley system

- The system is a single point of failure, so I proposed to build a new one for Muon g-2 (while upgrading the old one on Project funds)
- Value proposition: Systematic uncertainty of 70ppb can go to <60ppb

FAST FORWARD TO 2013: MY 2ND ATTEMPT

- Muon g-2 needed more people for the magnetic field measurement
- I joined and was asked to upgrade the existing, crucial trolley system

- The system is a single point of failure, so I proposed to build a new one for Muon g-2 (while upgrading the old one on Project funds)
- Value proposition: Systematic uncertainty of 70ppb can go to <60ppb
- Outcome:
- Review feedback:
 - Overall solid proposal
 - Value proposition too small given the overall precision goal of 140ppb

FAST FORWARD TO 2013: MY 2ND ATTEMPT

- Muon g-2 needed more people for the magnetic field measurement
- I joined and was asked to upgrade the existing, crucial trolley system

- The system is a single point of failure, so I proposed to build a new one for Muon g-2 (while upgrading the old one on Project funds)
- Value proposition: Systematic uncertainty of 70ppb can go to <60ppb</p>
- Outcome:
- Review feedback:
 - Overall solid proposal
 - Value proposition too small given the overall precision goal of 140ppb

Lesson 2: This time I had a good mentor for proposal writing and I should have listened more that I needed a stronger value proposition

FAST FORWARD TO 2014: MY FINAL ATTEMPT

🖄 Analysis (80% of proposal)

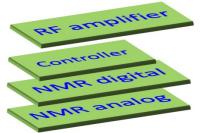
- Value gap: Many groups for the ω_a analysis, but no concerted effort for magnetic field
- Proposal focus to form a magnetic field analysis group

- Largest group for field analysis
- · Analysis center also due to solenoid test facility

FAST FORWARD TO 2014: MY FINAL ATTEMPT

Analysis (80% of proposal)

- Value gap: Many groups for the ω_a analysis, but no concerted effort for magnetic field
- Proposal focus to form a magnetic field analysis group


- Largest group for field analysis
- · Analysis center also due to solenoid test facility

X Hardware (20% of proposal)

- New trolley too much scope
- Upgrade existing trolley with enhanced features:
 - Add full waveform digitization
 - New spherical probes

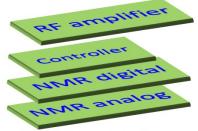
Fermilab E989 electronics

Brookhaven E821 electronics

FAST FORWARD TO 2014: MY FINAL ATTEMPT

Analysis (80% of proposal)

- Value gap: Many groups for the ω_a analysis, but no concerted effort for magnetic field
- Proposal focus to form a magnetic field analysis group


- · Largest group for field analysis
- · Analysis center also due to solenoid test facility

K Hardware (20% of proposal)

- New trolley too much scope
- Upgrade existing trolley with enhanced features:
 - Add full waveform digitization
 - New spherical probes

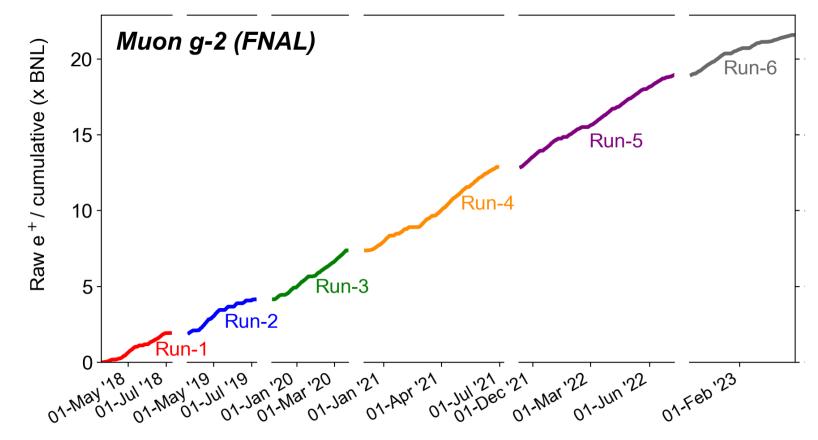
RF amplifier Smartfusion Auxiliary board NMR analog

Brookhaven E821 electronics

Fermilab E989 electronics

			Added value of proposal	
Systematic uncertainties for ω_p	E821	E989 goal	Analysis	New trolley
	[ppb]	[ppb]	center	features
Absolute calibration of standard probe	50	35	✓	
Calibration of trolley probes	90	30	\checkmark	\checkmark
Trolley measurement of B_0	50	30	\checkmark	\checkmark
Interpolation with the fixed probes	70	30	\checkmark	\checkmark
Muon distribution	30	10	\checkmark	
$Others^{\dagger}$	100	30	\checkmark	\checkmark
Time-dependent external fields	-	5	\checkmark	
Total systematic uncertainty ω_p	170	70		

Provide added value


Explicit table of impact for each activity

MUON g-2: STATUS AND OUTLOOK

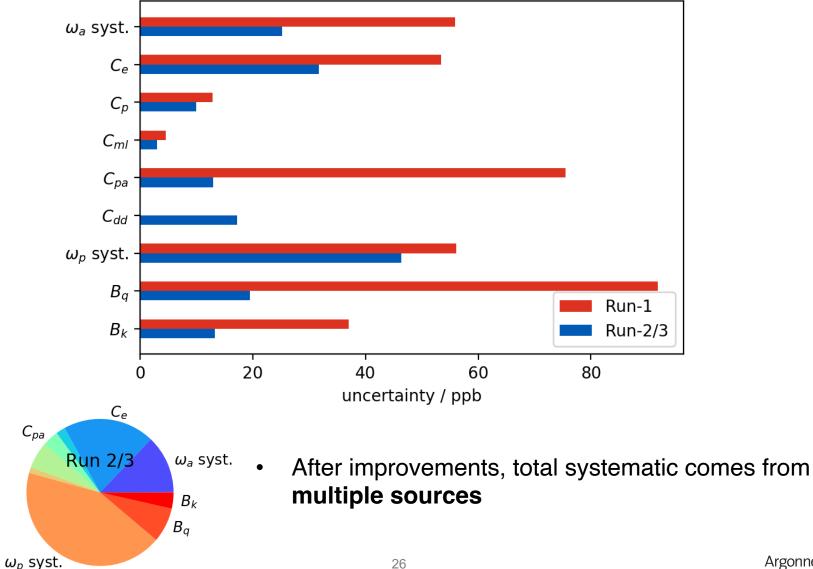
SHORT SUMMARY OF DATA TAKING

- Run-1: First result in 2021 confirmed BNL result with similar precision
- Run-2/Run-3: Second result 2023 with of statistical and systematic uncertainty by each a factor of 2.2
- Run-4/Run-5/Run-6: Final result expected 2025 with precision of <140 ppb</p>

RUN-2/3 UNCERTAINTIES: FINAL VALUES

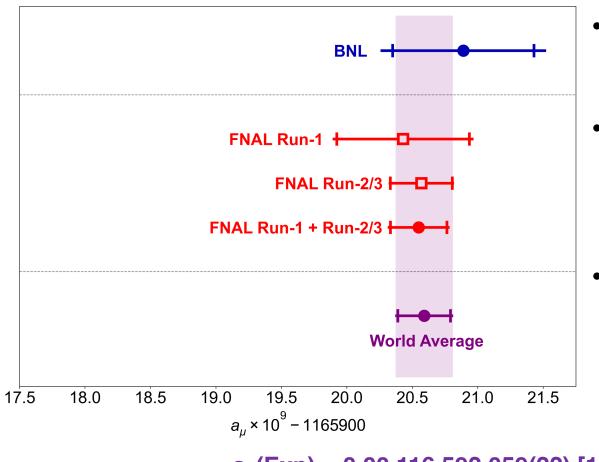
Quantity	Correction	Uncertainty
	[ppb]	[ppb]
ω_a^m (statistical)	_	201
ω_a^m (systematic)	_	20
C_e	451	32
C_p	170	10
$\dot{C_{pa}}$	-27	13
$ \begin{array}{c} C_p\\ C_{pa}\\ C_{dd} \end{array} $	-15	17
C_{ml}	0	3
$f_{\text{calib}}\langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	_	11
m_{μ}/m_e	_	22
$g_e/2$	—	0
Total systematic		(70)
Total external parameters	_	\times
Totals	622	215

Total uncertainty is **215 ppb**


[ppb]	Run-1	Run-2/3	Ratio
Stat.	434	201	2.2
Syst.	157	70	2.2

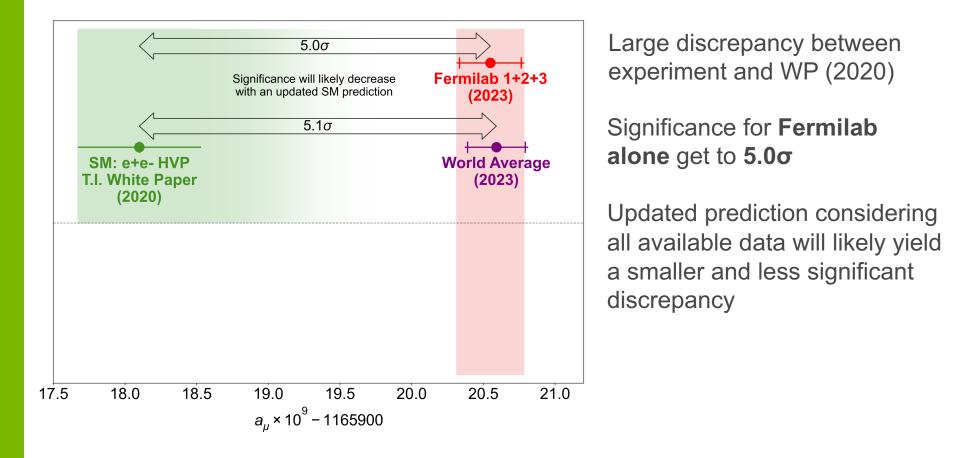
 Near-equal improvement: We're still statistically dominated

Systematic uncertainty of 70 ppb surpasses our proposal goal of 100 ppb!


RUN-2/3 UNCERTAINTIES: IMPROVEMENT IN ALL PARAMETERS

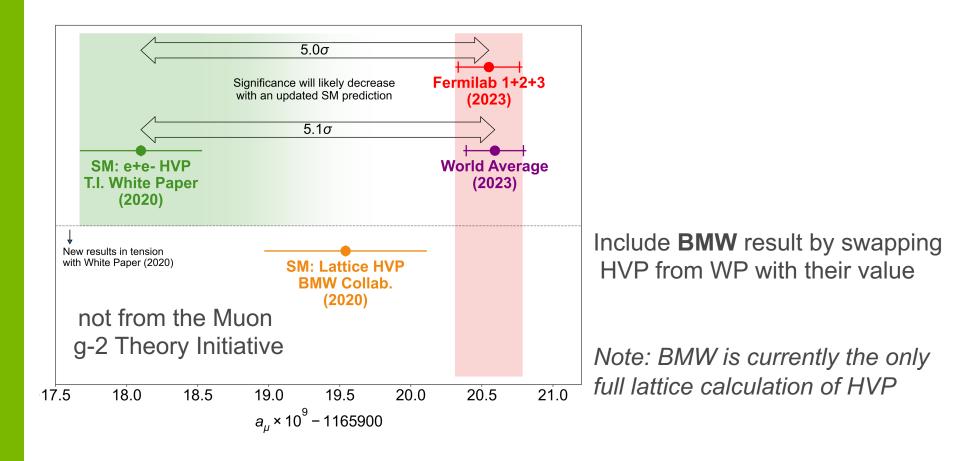
RUN-2/3 RESULT: FNAL + BNL COMBINATION

a_µ(FNAL) = 0.00 116 592 055(24) [203 ppb]


- FNAL combination:
 203 ppb uncertainty
- Both FNAL and BNL
 dominated by
 statistical error
- Combined world average **dominated by FNAL** values.

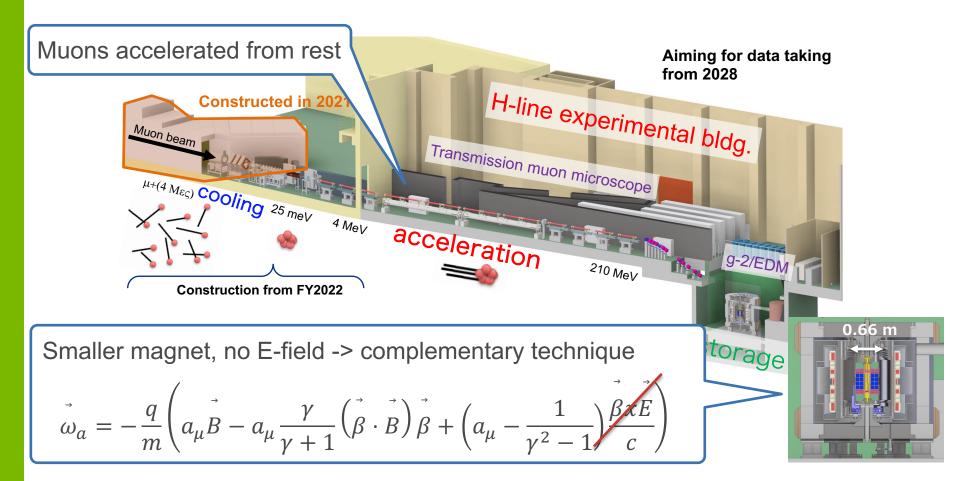
a_μ(Exp) = 0.00 116 592 059(22) [190 ppb]

EXPERIMENT VS THEORY COMPARISON


Theory prediction is less clear now, but we can still compare

EXPERIMENT VS THEORY COMPARISON

Theory prediction is less clear now but we can still compare



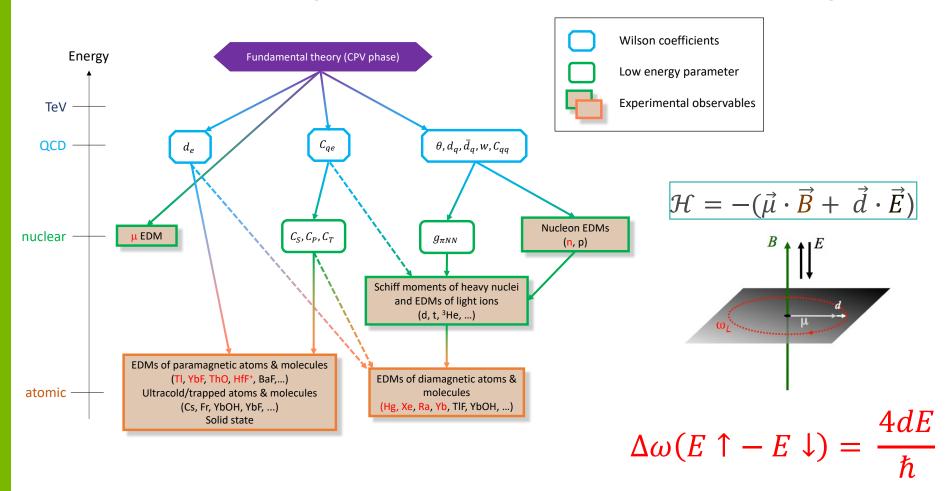
INTENSITY FRONTIER: MY VERY PERSONAL VIEW ON NEW OPPORTUNITIES

J-PARC MUON g-2/EDM EXPERIMENT

INTENSITY FRONTIER: MUCH OF THE PROGRAM FOR THE NEXT DECADE IS CLEAR

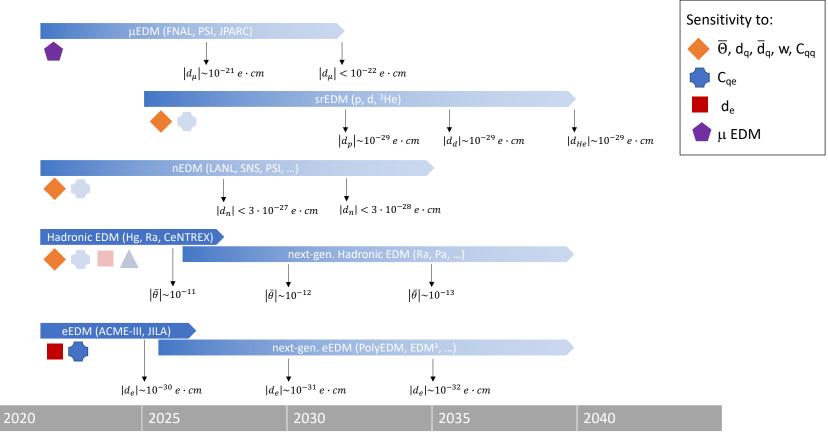
Flavor physics is a central focus: Mu2e, LHCb, Belle-II

- Frontier suggested in Snowmass report to add another science driver "flavor as a tool for discovery"
 - Understand flavor families and their (different) properties
 - Study flavor-specific decays to search for new physics
- Continued support for LHCb and Belle-II


. . .

- CLFV experiments with muons (especially Mu2e and Mu2e-II) are important components to the program
- Select portfolio accelerator-based dark sector experiments

ELECTRIC DIPOLE MOMENTS


EDM searches will play an important role to search for BSM physics

 Complementary EDM searches in AMO, NP, and HEP are needed to disentangle nature of underlying CP violation

NEW OPPORTUNITY: STORAGE RING EDM

- Different communities (AMO, NP, HEP) can benefit and exploit synergie:
 - srEDMs can learn from years of experience with table top EDM searches
 - As AMO/NP EDM searches grow, there collaborations grow posing new challenges
 - Detector systems can be used in various ways (e.g. quantum sensors, interferometeres, ...)
 ³⁴

