LSST Camera testing and optimization

Yousuke Utsumi (SLAC National Accelerator Laboratory)

2024-1-17 © Jacqueline/SLAC

1211

20

60

ant?

1000

-

Pres

- Della

1105

an hari

Camera ¾ Section

Raft & Focal plane

- 4k x 4k 10um² px CCD sensors segmented by 16 channels enabling 3Gpixel readout in ~2sec
- BNL constructed Science Rafts and SLAC:
 - Corner Rafts
 - Testing, Characterization, Integration
- Bias and Clock voltages and patterns are customizable

- 21 Science Rafts
 - E2V and ITL
- 4 Corners Rafts

• ITL

Ч (mm)

200

-300

TS5 (Metrology; see Andy Rasmussen's poster)

Bench of Optical Testing

TS8 (Electro Optical Testing)

Camera Calibration Optical Bench

Extensive Camera testing...

Pinhole Projector © Jacqueline/SLAC

repurposed CCOB Wide Beam (Flat) projector

Testing

- Noise, Dark, Serial Charge Transfer Inefficiency, Linearity, Bias structure, Defects (see Sean MacBride' poster), Brighter Fatter (see Alex Broughton's talk), Throughputs (see Aaron Roodman's poster) by wavelengths
- Jim Chiang's automated software "eotools" characterized the focal plane
 - Total ~1000 plots (20 focal plane level / 5 sensor level)

Characterizing Photon Transfer Curve

- ~400 samplings in flux
- Dynamical response of CCDs: noise, gain, "full well"
- Deviation from the straight line is "Brighter Fatter" effect (Alex Broughton's talk)

Optimization targets

Tearing (e2v)

Divisadero, R13/S11

Classical, R14/S22

Bias instability (e2v)

Bias shift (both)

Gain instability (ITL)

Brighter Fatter effect (both)

Broughton et al. (submitted)

Tearing (E2V)

- Juramy et al. (2019) reported "Tearing" in e2v devices
- "Nonuniform distribution of holes in the channel stops between sensor columns."
- Mitigation
 - Making all parallels low for 3ms before an exposure
 - Unipolar voltages (P+/P-)=(9,0)-> Bipolar voltages (P+/ P-)=(3.6,-6)
 - Row-by-row gain variation of ~0.2%
 - Tweaking RD mitigated the effect
 - Lowering parallel clocking from 9.6V to 9.3V
- Could be mitigated by "pinning" condition

Divisadero, R13/S11

Darks with realistic cadence

dout -0 ADU

- ~1800 darks were acquired
- A few ADU bias instability at the readout corner is present
- No clear driver have been understood

Gain stability (ITL)

flat gain stability, acq. run 13535, nm756 LED

- 1130 images were collected over ~24hours
- Stable within 0.1% over 24 hours
- dG/G ~ 0.06%/degC
- The cold plate temp is very stable
- Tweaking OD (one of bias voltages) improved gain stability

(NJD - 60259)*24 (hours)

Dipoles (ITL)

Changing the number of Hi parallel phases during integration removed this Charges stuck between low phases could explain this effect

Features in flat images

Laser annealing pattern in blue for e2v

"Coffee stain" — chemical finish pattern in blue? for ITL

Tree-rings for both types of sensors (significantly enhanced; HV off; see Zhuoqi Zhang's poster)

Studies by spot projectors

grid

streak

ellipses

Sensor response to measurement Sensor response to measurement

Xtalk

- · Laser annealing / Coffee stain pattern have impact on flux
- **Tree-ring** has some effect on measurements lateral electric field shifts (generally as small as 0.01% level)
- Midline breaks / Stress from back support structure

Esteves et al. (2023)

Persistence

- Charges appeared to be trapped at interface at Si-SiO2
- Doherty et al. (2014) narrowing parallel swing to 8V eliminate the persistence
- Mitigations:
 - "Pinning condition" flooding surface state by holes (safety concern by the vendor)
 - Make FW_blooming < FW_surface by paying penalty of loosing full well

X talk study

ITL Crosstalk Nonlinearity

Adam Snyder & Andrew Bradshaw derived Xtalk coefficients for all sensors from different methods using **spots** and **streak** based on **model fit** and **pixel basis**

B. Guachalla Confirmed P. Astier's delayed X talk component.

- Low Xtalk thanks to the distance between CCD and Read out electronics
- Presence of Non-linear component
- Delayed component

Summary

- Extensive Electro-Optical testings were performed: Biases; Darks (realistic cadence); Flats (Uniform illumination) by wavelengths and by flux; Structured illuminations
 - Large numbers of images to increase S/N
- Detailed studies of sensor response to measurement and X-talk
 - Laser annealing / Coffee stain: QE effect (correctable by flat fielding)
 - **Treering:** Lateral electric field shift (not correctable by flat fielding)
 - X-talk: non-linearity and delayed components
- e2v features: Tearing mitigation is mitigated / Persistence Study is underway at UCD
- **ITL features:** Dipoles / Gain instability are mitigated