FIREBall-2 EMCCD for photonstarved UV astronomy: modelling, tradeoffs and future upgrades

- 1. Introduction (context, principles, specs)
- 2. EMCCD modelling
- 3. Performance & tradeoffs
- 4. Challenges & potential mitigation strategies

Vincent Picouet, PostDoc California Institute of Technology

+ B. Milliard, G. Kyne, D. Schiminovich,E. Hamden, A. Khan... & the whole FIREBall team

Credits: W. Mouser

Introduction: Photon starved astronomy with FIREBall-2

FIREBall-2: a balloon-borne UV multi-slit spectrograph coupled to a 1m telescope to observe the CGM emission at $z\sim 0.7$

- Goal
 - Science path finder: Map the faint gas around galaxies/quasars
 - Test bench: Advance readiness level of technologies
- Cutting edge technology to observe this faint/diffuse emission:
 - Aspheric high efficiency grating (LAM)
 - Sub-arcsecond pointing system (CNES)
 - High QE e2v EMCCD + NüVü controller (JPL/Caltech)
 - Flew successfully in 2018 (Picouet 2020, Kyne 2019)

Introduction: EMCCD principles

- FIREBall-2 CCD 201
 - High QEuv (~60%) due to p-type delta doping, enhanced by depositing 3 layers antireflection (AR) coatings (Nikzad 2012)
 - Can achieve low dark at low temperature (<<1e-/pix/h). lacksquare
 - Photon starved astronomy is limited by read noise level ► EMCCD interest
- EMCCDs amplify electrons
 - To suppress the read noise
 - Clock induced charges & dark are also amplified !
 - Stochasticity generates an excess noise factor (ENF) of $\sqrt{2}$

	Noise performance		
Read noise (e⁻)	 ~20e⁻ → 0e⁻ with amplification 	Amplification gain	
Dark current noise	 Facing a plateau around 0.5e⁻/pix/hour below -110°C (amplified) 	Excess noise factor	
Clock induced charges	 ~0.01e⁻/pix/frame (amplified) 	Charge transfer efficiency	

Goal: design a model that would unbiased estimation of all parameters (RN, Dark, CIC, Gain, smearing)

Other performance

- ~2000 e⁻/e⁻ on FIREBall
- Linear fit working inly if CTE=1, CIC<<Flux<<1,
- √2 factor: Suppressed by thresholding under strict conditions (CTE~1, F<<1e⁻/pix/frame, G/RN>>10)
- Appears at T<-80°C, in the amplification register
- Similar to exponential decay independent from pixel intensity

EMCCD modelling

Interest

- Assessing unbiased **detector parameters** (from Flux/CTE)
- Performing bayesian **photon counting** & assess photon counting efficiency
- Analyzing and **optimizing detector performance** in different scenario

$$p(n_{ic};\Theta) = ((G(g) \circ P(\lambda)) * N(\lambda))$$

- Easy to do a stochastic model: draw pixels value by combining Gamma(poisson)+Normal
- Also several analytical/parametric models (Hirsch 2013, Harpsoe 2012) \rightarrow automatic fitting
- Allow to access all the parameters
 - Amplification gain: \pm 50 ADU/e⁻
 - Amplified electrons (Flux+dark+CIC): $\pm 0.02 \text{ e}$
 - Readout noise: ± 0.1 ADU
 - Semi amplified CIC, and parallel CIC (0sec exposure): ± 0.005
 - Bias: ± 0.1 ADU

 $RN, b))(n_{ic})$

 $=\frac{\lambda e^{-\lambda}}{\mathbf{g}}\exp\left(-\frac{n_{oe}}{\mathbf{g}}\right)_{0}\tilde{F}_{1}\left(;2;\frac{n_{oe}\lambda}{\mathbf{g}}\right)$ $\begin{bmatrix} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\lambda - \frac{(\mathbf{f}n_{ic})^2}{2\sigma^2}\right) + \frac{2}{\mathbf{g}}F_{\chi}(2\lambda; 4, 2\mathbf{f}n_{ic}/\mathbf{g}) & n_{ic} > 0 \\ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\lambda - \frac{(\mathbf{f}n_{ic})^2}{2\sigma^2}\right) & n_{ic} \le 0 \end{bmatrix}$

EMCCD modelling: The issue of smearing

- Charge transfer inefficiency:
 - Smears the pixels values on following pixels
 - Appears below $<-80^{\circ}C$
 - Has an **enormous** impact on the histogram
 - Can reduce the effective gain by factor >3
 - Can lower photon counting efficiency
- Fits really well an exponential profile
 - Independent of first pixel intensity
 - BUT hot pixels, CR & OS can give \neq results
- So added it easily to the stochastic model
 - $Gamma(Poisson(F),G) * exp^{-1/smearing} + N(Bias,\sigma_{RN})$
 - Fits everything (with low high flux, smearing, etc)
- & combined a smearing toy model to Harpsoe 2012
 - Works in nominal low flux conditions
 - Allows automatic fitting

Fitting method:

- Fit Gain, Flux & Smearing (on physical region):

Retrieving all the parameters

EMCCD performance

	Noise performance	
Read noise (e⁻)	 ~20e⁻ → 0e⁻ with amplification ↗ with readout (RO) frequency 	Q ef
Dark current noise	 Facing a plateau around 0.1e⁻/pix/hour below -110°C (amplified!) 	Am
Clock induced charges	 ~0.01e⁻/pix/frame (amplified!) with RO frequency, ↗ with gain 	Char ef
Excess noise factor	 √2 factor that can be suppressed by thresholding under strict conditions (CTE~1, F<<1e⁻/pix/frame, G/RN>>10) 	Со

And induced trade offs and challenges...

	Other performance
uantum ficiency	 >60% on instrument range (λ ∈ [190-220] nm) Similar QE in the optical (λ ∈ [300-900] nm), that is goi suppressed with multilayer di-electric coating
olification gain	 ~2000 e⁻/e⁻ on FIREBall Linear fit working inly if CTE=1, CIC<<flux<<1,< li=""> </flux<<1,<>
ge transfer ficiency	 Appears at T<-80°C, in the amplification register Similar to exponential decay independent from pixel int
smic ray mpact	 Tail of about 5x100 pixels High cosmic-ray rate in stratosphere (>2 p/cm²/sec)

Exposure time calculator and image simulator

ETC:

- Examine the instrument efficiency
- Explore the SNR evolution under different scenarios
- Run different trade studies

Source	Observing strategy	Instrument design	Spectrograph design			
 Flux Sky Source extension Source's line width 	 Exposure time Total acquisition time Atmospheric transmission Observed wavelength Distance to source/line center 	 Exposure time Total acquisition time Atmospheric transmission Observed wavelength Distance to source/line center (at mask] Collecting area Plate scale Instrument throughput Spatial resolution at detector [at mask] 				
Detector parameters	EMCCD	FIREBall specifics	Imaging			
 Quantum efficiency Dark current, read noise Readout time Pixel size Image loss due to cosmic ray 	 EM gain CIC thresholding Smearing exponential length 	 Fixed detector parameters: Dark(T) Smearing(T) CIC(EmGain) Temperature Thresholding photon counting Threshold 	 Full well of the detector Conversion gain Throughput(λ) FWHM to add the λ dependency. 			

Image simulator:

- Analyse and get used to simulated image
- Improve reduction pipeline \bullet
- Adapt detection strategy

Exposure time calculator and

Exposure time calculator and image simulator for spectro-imagers

	Charact.	Unit	FIREBall-2 2018	FIREBall-2 2023	MOSAIC	GALEX FUV	GALEX NUV		CASTOR DMD	KCWI red	KCWI blue	MUSE wide	MUSE narrow	SHERE IRDIS	NIRSPEC	LUMOS	NISP	SUMIRE PFS Blue	ELT Harmony	SPHEREx	JUNO-UVS	<u>CETUS</u>	Blu
B	wavelength	nm	200	200	600	152.8	227	200	2000	700	450	700	700	1000	600	150 -	1000	500	600	1000	150	250	
esi	Spectro description		Multi slit	Multi slit	Fibers	Slitless	Slitless	Long slit	DMD MOS	Slicer	Slicer	Slicer	Slicer	Long slit	Multi-Object -	MOS	Slit less	Fiber	Slicer	Lin. var filters	Slit	MSA MOS	;
n.d	FOV_size	amin2	648.00	648.00	40.00	4608.00	4464.00	441000.00	6.73	0.19	0.19	1.00	0.02	0.03	9.60	4.80	1983.19	6084.00	0.02	284760.00	3600.00	289.00	
tru	Bandpass	nm	197-213	197-213	450-700	135-175	175-280	115-265	150-300	560-1080	350-560	465-930	465-930	950-1650	600-28500	100-200	900-1192	380-650	800-1350	750-2420	68-210	180-350	3
lns	pixel_scale	"/pix	1.100	1.100	0.250	1.500	1.500	1.030	0.100	0.147	0.147	0.200	0.025	0.012	0.100	0.330	0.300	0.939	0.040	6.200	148.000	0.400	
uß	Bandwidth	A	160	160	2500	400	1050	1500	1500	5200	2100	4650	4650	7000	279000	1000	2920	2700	5500	16700	1420	1700	
esi	Spectral_resolution	λ/dλ	1300	1300	4000	200	90	1500	1500	1300	1300	3000	3000	350	1000	8000	380	2300	3300	41	75	1000	
2	Slitwidth	•	6	6	3	3600	3600	16	0.2	0.35	0.35	0.200	0.025	0.1	1.6	0.10	42	1.1	0.040	12600	90.00	2.00	
ecti	Slitlength	•	25	25	3	3600	3600	3600	20	1.35	0.35	0.200	0.025	11	3.0	3.00	NA	1.1	0.06	NA	432.00	360.00	
Sp	dispersion	Â/pix	0.21	0.21	0.63	2.50	6.06	0.04	1.40	0.30	0.20	0.40	0.40	11.00	<u>14.29</u>	0.04	<u>13.00</u>	0.70	0.69	4.18	1.00	0.42	
	Name		FB	FB	ELT	GALEX	GALEX	UVEX	CASTOR	Keck	Keck	VLT	VLT	VLT	JWST	LUVOIR	EUCLID	Subaru	ELT	SPHEREX	JUNO	CETUS	
ope	Altitude	km	35	35	3	1000	1000	1000	1000	4	4	3	3	3	1000	1000	1000	4	3	1000	1000	1000	
esc	Collecting_area	m2	0.785	0.707	1195	0.196	0.196	0.442	0.780	78.500	78.500	52.810	52.810	52.81	34.21	176.000	1.13	52.810	1195	0.031	0.00001	1.77	
Tel	Atmosphere	%/100	0.50	0.50	0.92	1.00	1.00	1.00	1.00	0.90	0.90	0.90	0.90	0.92	1.00	1.00	1.00	0.90	0.92	1.00	1.00	1.00	
	<u>Sky</u>	erg/cm2/s/"2/Å	4.60E-16	2.00E-18	5.00E-18	2.00E-18	2.00E-18	2.00E-17	1.00E-18	1.13E-17	1.76E-17	1.13E-17	1.13E-17	1.50E-17	3.00E-17	2.00E-17	1.00E-18	1.70E-17	5.00E-18	1.00E-18	1.00E-18	1.00E-18	1.
	Signal	erg/cm2/s/"2/Å	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.00E-16	1.
_	PSF_source	" (σ)	5	5	5	5	5	5	16	5	5	5	5	5	5	5	5	5	5	5	5	5	
(Gea)	Line_width	A	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15					
tart	acquisition_time	hour	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2				•	
s. S	exposure_time	sec	50	50	900	1000	1000	300	600	1600	1600	500	500	20	1000	1000	565	60			· •••		
e d	lambda_stack	A	0.21	0.21	0.63	2.50	6.06	0.04	1.40	0.30	0.20	0.40	0.40	<u>11.00</u>	<u>14.29</u>	0.02	13.00	0.7			•• ••		
	Δx		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0					
	Δλ	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	_			· • • • •	
per	PSF_RMS_mask	"σ	2.50	2.50	0.10	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.00	0.0	· • • • · · ·			• • • •	' .''
str	PSF_RMS_det	" (σ)	3.00	3.00	0.10	1.83	2.26	0.85	0.30	0.59	0.59	0.02	0.02	0.30	0.10	0.02	0.23	1.6					
5	Throughput	%/100	0.11	0.11	<u>0.17</u>	0.16	0.16	0.20	0.70	0.30	0.30	0.25	0.20	0.25	0.20	0.80	0.50	0.5	. •• I				<u>.</u>
	Detector_type	1.5	emCCD	emCCD	urv CCD 16	MCP	MCP	CMOS	CMOS	emCCD	emCCD	CCD	CCD	12RG 2 2x11	CCD	emCCD	HgCdTe	CCD 2		•••	•		Ŧ
2	pixel_size	μm	13	13	6.5	37.00	37.00	10	10	15	15	15	15	18	18.00	6.5	16	18	_••••		u alla		
cto	readout_time	sec	0.5	5.0	100.0	0.0	0.0	3.0	3.0	16.0	16.0	95.0	95.0	0.8	10.0	0.0	10.0	106	· • • • • •				i•Ţ
ete	RN Devel exercise	e-/pix	107	40	2.3	0.040	0 0 10	2	2	3	3	2.6	2.6	4	16	3	28	2.			71		Į•∙
	Dard_current	e-/pix/nour	0.50	0.40	18	0.049	0.049	3.0	3.0	3	0.95	0.70	0.70	210	0.70	18	0.75	1.	• • • •				÷ •
		%/100	0.0050	0.0050	0.00	0.12	0.00	0.9	0.9	0.00	0.00	0.70	0.70	0.95	0.70	0.13	0.0001	0.00	••] ••	••••••			:
	cosmic_ray_loss_per_sec	./sec	1.5	0.0050	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.00			····		
cifi	CIC charge	pix o-/oxp	0.015	0.015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0				i s e e s	<u>بة</u>
spe	EM gain	e-lexp	1400	1700	1	1	1	1	1	1	1	1	1	1	1	1	1	1			•••••	:•t	Ĭ.
£	extra background	e-/nix/hour	3	0.5	0.10	0.10	0.10	0.10	0.00	0.10	0.10	0.10	0.10	010	0.10	0.10	0.10	0 1					Ĭ
	Full well	kADU	56	52	60	60	60	60	60.00	60	60	60	60	60	60	60	60	60				•	•
ag.	conversion gain	ADU/e-	0.5	1	1	1	1	1	1.00	1	1	1	1	1	1	1	1	1					-
E	Throughput FWHM	A	300	400	2500	400	1050	1500	1500	5200	2100	4650	4650	7000	279000	1000	2920	270					
	The ugriput_i think		000	and the second	2000	100	1000	1000	1000	0200		1000	1000	1000	210000	1000		and the second					

https://github.com/vpicouet/spectro-imager-etc

EMCCD Tradeoffs

- Exposure time (t_{exp})
 - CIC & RO time lower SNR at low texp
 - Cosmic ray masks an image fraction \propto t_{exp}

• Temperature

- Dark current \nearrow with T°
- Smearing appears at T<-80°C & increases ➤ preventing efficient photon counting
- Charact the T[°] dependancy gives T_{opt}[°]
- Photon counting threshold
- Controller frequency
- Charge clearing
- Gain vs CIC

Obser	ved S	Sourc
-	Гетр	(C)
Image)	
	-	10
	x/exp	10
	(e-/pi	10
	Noise	10-
	ne	10
	'pix/frar	10
	e-)	

N frames) 10⁰ SNR (res, 1 -1

cm²/s/asec²) -14-16 Log(erg/

Cosmic rays

Photon counting threshold

$$SNR(T) = rac{S imes rac{T \cdot e^{->0, ADU > T}}{N_{e^{-} > 0}}}{\sqrt{rac{N_{e^{-} > 0}, ADU > T}{N_{e^{-} > 0}}} imes (S + \sigma_{CIC}^2 + \sigma_{DC}^2 + \sigma_{SKY}^2) + rac{N_{e^{-} = 0, ADU > T}}{N_{e^{-} > 0, ADU > T}}}$$

$$imes rac{N_{e^->0,ADU>T}}{N_{e^->0}}$$

Gain = 1500, RN = 40, flux = 0.10, smearing=0.6, Threshold = 437 = 10.94 \sigma

Challenges and adaptation

Sky background & Straylight
 → EMCCD red blocking filter
 Dark plateau at low T°
 → cooling, EMCCD filter?
 Cosmic ray impact
 → Overspill register addition

Challenges and adaptation: EMCCD red blocking filter

Current EMCCD:

- Delta doping for UV optimization (QE_{int}=100%)
- 3 layers antireflection coatings to boost QE_{tot}
- QE is also high in visible! → Red leak issue!

Adaptation:

- Addition of 1-2 layer metal-dielectric filter to suppress the out-of-band light
- 15% reduction of QEuv per layer
- Factor ~ 20 reduction of QE in visible

Challenges and adaptation: Dark plateau at low temperature

- Dark values plateauing at low temperature ($<-100^{\circ}C$)
 - non-temperature dependent component...
 - Low-level light leaks?
 - Photons from the tail of thermal black-body emission?
 - Smearing biased estimation?
- Ongoing experiment at UoA shows the plateau value reduces when detector surrounding is cooled (A. Khan in prep)
- This could be consistent with NIR black body emission
- EMCCD QE is not constrained above 1 μ m
- Number of Black Body photon reaching the detector:

$$N = A \times \Omega \times t \times \int_{\lambda_{\text{start}}}^{\lambda_{\text{end}}} \frac{2c}{\lambda^4} \left(\frac{1}{\exp\left(\frac{hc}{\lambda k_B T}\right) - 1} \right) \times \text{QE}(\lambda), d\lambda$$

- Possibilities:
 - Reduce instrument T[°] seen by EMCCD
 - Reduce QE in the NIR/visible

Challenges and adaptation: Cosmic ray impact

- Rate >2 particles/cm2/sec (500 times higher than on ground)
- At optimal exposure time, 25% of the image is masked
- Overspill register reduces CR tail by ≥ 3
- High exposure time without cosmic rays and should increase the possible SNR by >15%
- Should be able to implement this change late 2025

P. Morrissey 2023: Effect of the Overspill Drain on an energetic cosmic ray at an EM gain of 1000

25% area loss

Conclusion

- EMCCDs boast impressive potential but can be intricate ${}^{\bullet}$
- They require precise optimization to unlock their full capabilities
- Ongoing significant technological progress
 - Red blocking filter
 - Cosmic ray impact mitigation [Morissey 2023]
- Still a lot to learn and optimize
- Important *current* limiters for FIREBall science
 - Red leak \rightarrow mitigation in progress
 - Cosmic ray impact \rightarrow mitigation in 2025?
 - Charge transfer inefficiency (smearing) at low temperature ➤ Correction? Inversion
- EMCCD remain competitive for FIREBall science \bullet
- Efficiency for low surface brightness detection is slightly higher than what is achievable with MCPs

Vincent Picouet vpicouet@caltech.edu

Analytical toy model description of smearing (hypothesis: low flux)

- Reduce $D_1(n_{ADU})$ by $D_1(n_{ADU} \sum e^{-i/\text{smearing}})$
- Transfer this energy to the adjacent pixel lacksquare= replacing D₀ by $D_{Tot}(n_{ADU} \times e^{-1/\text{smearing}})$

Iterate on following 3-4 pixels for low CTE ${ \bullet }$

- Allows automatic fitting (even smearing)
- Work still in progress, some degeneracy

Analytical model and automatic fitting

0.	
C	
S.,	
10 B	
80	
· · ·	
•	
•*•	
33	
18	
F	
Page	
•	
e	
6°	
8 °	
3 - C	
£	
\$1. C	
ų.	
Ϋ́.	
4 -	
• •	
•	
•	
•	
•	
•	

Challenges and adaptation: EMCCD processing codes

Smearing correction/inversion

- pixels
- Iterate over each image in the datacube

Challenges and adaptation: EMCCD processing codes

Bayesian photon counting

- Assess the detector parameters: bias, readnoise, gain, CIC, Dark, smearing.
- Prior assessment:

 - time calculator.
- \bullet
- For each flux/histogram: \bullet
 - number of photo electrons they most likely received.

• If this is a flat image, the average flux could be assessed using histogram fitting from step 1. • It is also possible to derive a prior for any given pixel. Either by dividing the image (potentially smoothed) by the gain or if the astronomical source in known by using a simulation or the exposure

Use these parameters to model an similar histogram or a sequence of histogram for different fluxes, distinguish the different population of pixels based on the number of photon electrons they received

• For each number of photon electrons (n), find the value of ADUs at which the distribution in ADU (P(n)) crosses the distribution of P(n-1) and P(n+1). Use these values to assign to each pixel the

Overspill register

Morissey 2023: Flight photon counting electron multiplying charge coupled device development for the Roman Space Telescope coronagraph instrument

- Overspill register parallel to the gain register to mitigate the effects of cosmic rays.
- Early results indicate the gain register overspill is very effective at eliminating tails from cosmic rays

Fig. 21 A comparison of cosmic ray tails observed in the lab with the camera operating at high gain (>1000×). (a) A 256 × 256 image section from the CCD201 and (b) the CCD311 under similar conditions. The operating temperature was -105° C. The improvement is quite significant with tails in the commercial sensor example of over 100 pixels and only 40 pixels in the flight design as a result of the overspill.

Interactive image processing scalable into a multi-processing pipeline with

DS9 quick look plug-in

- **Observations' reduction:** Stacking, background removal...
- Performance verification: Radial profile, 2D/3D fitting...
- Research-grade analysis: Source/artefact extraction...
- Or simply turn your Python codes into DS9 Macros

• Instrumentation: Centering, trough-focus...

https://github.com/vpicouet/pyds 9plugin

Picouet 2021: Tackling the issue of image processing via plugins: the example of pyds9plugin

Summary

- The need for image processing applications
- Challenges for image processing tools
- The interest of fits-viewers plugins
- Introducing pyds9plugin
- Conclusion

Basic visualization: zooming, panning, rotating, scaling and colormap

Enhanced visualization:

3D visualization, profiles/spectra extraction, catalog overlay, multi-resolution

Image analysis:

radial profile, fitting, source extraction, photometry, light-curve, throughfocus, noise estimation, astrometric calibration

Image processing:

stacking, background subtraction, deconvolution, masking

Research-grade pipeline:

All the above on a set of images with multi-processing

The different functions

