

H4RG-15 detector features, performance statistics, and characterization data products for VLT-MOONS

Elizabeth George

ESO Detector Systems Group

VLT MOONS

VLT-MOONS instrument

- Fibre fed Multi-object Spectrograph mounted on VLT Nasmyth
- +1000 fibre deployable over 500 sq. arcmin
- Wavelength 0.6 to 1.8 um, with low- and highresolution modes (R = 4-20k)
- f/0.95 Schmidt Cameras
- 4x H4RG-15 Teledyne (YJ and H bands) and 2x LBNL Fully Depleted CCDs (RI bands)

Science Goals (examples):

- galaxy formation and evolution near peak of star formation (z = 0.8-3)
- Resolved stellar populations (Gaia follow-up): radial velocities, metallicities and chemical abundances

MOONS Detector Systems

Detectors must fit inside central obscuration of Schmidt camera. \rightarrow Compact cold electronics design. Operated with ESO's warm NGC controller. (H4RG-15 design pictured)

See: Alvarez et al. AN Oct. 2023 https://doi.org/10.1002/asna.20230064

MOONS H4RG-15 performance

MOONS H4RG-15 characterization program

- 5x H4RG-15s characterized (1 engineering grade, 4 science grade)
- Full characterization plan with defined parameters, datasets, analysis methods, and data products.
- Identical datasets acquired on all devices, over a range of operation temperatures
 - default 40K, some measurements made up to 85K to inform future instruments
- (Nearly) fully automated data acquisition and analysis.

H4RG-15 Operation parameters

- MOONS is a spectrograph which primarily uses long readouts and requires low noise.
- 40K operating temperature decided upon primarily due to:
 - Lower dark current/less hot pixels
 - Lower persistence
- Buffered mode operation selected primarily to:
 - Allow more reads in shorter exposures (lower noise in UTR frames).
 - Reduce channel-to-channel crosstalk that would cause contamination due to bright sky lines.

Crosstalk matrix

- Amplifier crosstalk greatly reduced by switching to buffered mode operation, < 0.01% coupling.
- No ghosts from bright sources.
- Primary reason why MOONS decided to use buffered mode despite the additional buffer glow – did not want to be correcting crosstalk contamination from skylines in software!

See: George et al. JATIS Nov. 2019 https://doi.org/10.1117/1.JATIS.6.1.011003

Data Classification: PUBLIC

Dark Current and Glow per Read

- Generally good performance, except glow from output buffer (glow-per-read and glow-per-time component)
- In MOONS, Filter directly in front of detector means that any glow from PEDs will be reflected back onto detector!

20210917 SCI19907 AUTOCHAR-DarkGlowCube-41K Dark and Glow Maps

Dark Current and Glow per Read

- Generally good performance, except glow from output buffer (glow-per-read and glow-per-time component)
- In MOONS, Filter directly in front of detector means that any glow from PEDs will be reflected back onto detector!

20211026 SCI19907 AUTOCHAR-DarkGlowCube-41K Dark and Glow Maps

Dark Current and Glow per Read

- Hot pixel regions were reduced a lot in some detectors by going to a 40K operating temperature (despite a 2.5 µm cutoff wavelength). Some detectors had nearly no hot pixel regions however.
- Characterization of the output buffer glow were reported at SDW 2022 in Bezawada et al. See also upcoming paper on detector operation strategies for how to reduce this glow.
- In MOONS, worst case of glow is at the bottom of the array where the glow can reach 1-2 e-/px/read.
- Good news is that this characterization program spurred the development of v2 of the H4RG-15 ROIC—which seems to have fixed this glow issue!

Cosmetics and PEDs

- Generally very good operability, but some detectors had PEDs.
- Different types of PEDS we encountered
 - Glowing columns when column deselect fails (fix by disabling and re-enabling column deselect) \rightarrow fixed in v2 ROIC.
 - PED that reacts as a glow per read (fix by skipping rows).
 - PED that reacts as dark current (sometimes but not always fix by deselecting column where PED is located).

ENG-20370

Normal state: telemetry on VDDA= 3.391

Dark images (arbitrary scaling) from ENG-20370 and SCI-20372 detectors illustrating different types of PEDs we encountered

Noise vs. Samples

- Glow from buffer limits noise performance in long exposures at bottom of array.
- In MOONS, we limited the maximum number of samples in UTR to 128 even for long readouts to limit impact on noise performance. Median over array around 5 e- RMS in UTR readouts, up to 11e- at bottom of array.

13

Data Classification: PUBLIC

- Measured using special sequence
 - Flash LED
 - Soak Traps
 - Detrap over 14 hours
- Fit using time constant bins
 - Similar to DLTS, but sensitive to much longer time constants.

See: Tulloch and George, JATIS 2019 https://doi.org/10.1117/1.JATIS.5.3.036004

- Measured persistence from 40-85K
 - Fit model with traps in time constant bins.
 - Trap density in time constant bin changes
 → measure trap energy.
- Varied from detector to detector by an order of magnitude. (0.2-2.5% trap density)
- Detectors with cross-hatch and more hot pixels at 85K showed higher persistence even at 40K.
- Peak in persistence around 65K
 - Traps faster than frame time at 85K
 - Traps slow (frozen out) below 50K

Persistence detrapping for 14 hours after bright illumination

- Measured persistence from 40-85K
 - Fit model with traps in time constant bins
 - Trap density in time constant bin changes
 → measure trap energy.
- Varied from detector to detector by an order magnitude. (0.2-2.5% trap density)
- Detectors with cross-hatch and more hot pixels at 85K showed higher persistence even at 40K.
- Peak in persistence around 65K
 - Traps faster than frame time at 85K
 - Traps slow (frozen out) below 50K

Persistence detrapping for 14 hours after bright illumination

- Measured persistence from 40-85K
 - Fit model with traps in time constant bins
 - Trap density in time constant bin changes
 → measure trap energy.
- Varied from detector to detector by an order magnitude. (0.2-2.5% trap density)
- Detectors with cross-hatch and more hot pixels at 85K showed higher persistence even at 40K.
- Peak in persistence around 65K
 - Traps faster than frame time at 85K
 - Traps slow (frozen out) below 50K

$$\tau_{detrap} = \frac{1}{AT^2} e^{-\frac{E_{trap}}{kT}}$$

$$A = 4\sqrt{6} \ \pi^{3/2} \sigma_{trap} \frac{k^2 m_{eff}}{h^3}$$

 $E_{trap} = 0.13 eV$

Persistence detrapping time constant distribution at different temperatures

See: Ives et al. SPIE Dec. 2020 https://doi.org/10.1117/12.2562408

Persistence - comparison

0.2% trap density in best detector (SCI-19907)

• 2.5% trap density in worst detector (SCI-20372)

19 H4RG-15 Detector Performance for VLT-MOONS, 13. March 2024, ISPA conference

Crosshatch

- Some devices (SCI-20374 and SCI-20372) showed a crosshatch pattern under illumination
- Indicative of stress in MCT
 - These areas typically had higher dark current and higher persistence.

Cross-hatch pattern near center of SCI-20374

Gain Map

20230324 SCI20374 AUTOCHAR-PTC-LED-MAP-40K IPC Corrected Gain Map

- MOONS uses a median Gain per output in analysis, 64 values per detector saved in fits headers.
- However much more variation in device!
 Glue voids (ice crystals) have ~10% lower gain.

Bias Stability

- Take 1000x 60s darks and check the average frame value (UTR dark).
- Saw a 2.5x improvement in bias stability between using Current Boost Low Power and using Current Boost without low power mode. (Reg3 = 0x3190 vs 0x3090)

Bias Stability

- Take 1000x 60s darks and check the average frame value (UTR dark).
- Saw a 2.5x improvement in bias stability between using Current Boost Low Power and using Current Boost without low power mode. (Reg3 = 0x3190 vs 0x3090)

Big performance table at 40K

+ES+

	ENG-20370*	SCI-19907	SCI-19910	SCI-20372	SCI-20374
Dark Current (median)	0.0029 e-/px/s	0.0035 e-/px/s	0.008 e-/px/s	0.014 e-/px/s	0.008 e-/px/s
Glow per read (median)	0.051 e-/px/rd	0.037 e-/px/rd	0.053 e-/px/rd	0.043 e-/px/rd	0.014 e-/px/rd
Noise CDS, UTR 120s	10.0, 5.8 e- RMS	11.2, 4.6 e- RMS	11.7, 5.1 e- RMS	11.6, 5.6 e- RMS	9.9, 4.5 e- RMS
Persistence trap density	0.68%	0.20%	0.51%	2.52%	1.38%
QE @ 2 µm, (Teledyne, 77K)	96%	90%	97%	95%	89%
IPC (total)	2.75%	2.48%	2.99%	2.08%	1.98%
Gain	2.15 e-/ADU	2.01 e-/ADU	2.07 e-/ADU	2.29 e-/ADU	2.08 e-/ADU
Non-Linearity 5-50% FWC	1.19%	1.06%	1.29%	1.76%	1.23%
Full Well Capacity at 250mV bias	91 ke-	102 ke-	101 ke-	104 ke-	101 ke-
Operability (Teledyne definition)	93.62%	99.48%	99.39%	97.08%	98.26%
Amplifier Cross talk (median, max) 200 kpix/s	0.01%, 0.05%	0.01%, 0.19%	0.04%, X (affected by noise)	<0.01%, 0.05%	<0.01%, 0.04%
Bias Stability (e- RMS)	3.8* e- RMS	1.2 e- RMS	1.9 e- RMS	1.3 e- RMS	1.2 e- RMS
PEDs	1, (mostly) removed via RD	0	1	2, 1 removed via CD	0

24 H4RG-15 Detector Performance for VLT-MOONS, 13. March 2024, ISPA conference

*Operating using Current Boost without low power option

Characterization Data Products

Characterization data products

+ES+ 0 +

Maps (used for modelling)

- Persistence trap density
- Gain per pixel
- QE
- Dark current
- Glow per read
- Noise (CDS and UTR)
- Bad pixels
- Etc.

Values (used to verify requirements)

- Median persistence trap density
- Median Gain (low signal)
- Median QE
- Median dark current
- Median glow per read
- Median IPC
- Median Noise (CDS and UTR)
- Fraction Operable pixels
- Etc.

Example data product use: persistence correction

Workflow

- Persistence trap density map and time constant vector produced in characterization program.
- Pipeline team processes data products for each detector and integrates them into ESO Data Quality pipeline.
- DQ pipeline runs predictive persistence model on all exposures from previous few hours and calculates a predicted persistence map for each exposure.
- Scientists can use the predicted persistence map to correct their science exposures.

Example data product use: persistence correction

Input Frame to Correct for Persistence: prep_SCI20374_53929_post_dark_300 Computed Persistence Map $Q_{tot}(\mu = 337.27/326.77 \pm 316.43 e^{-1})$

Example data product use: persistence correction

Input Frame to Correct for Persistence: prep_SCI20374_53929_post_dark_300

Persistence-Corrected Input Frame

For the ELT: characterization data to the archive

- ELT first generation instruments science detectors:
 - 17x H4RG-15 detectors
 - 5x H2RG
 - 1x GEOSNAP
 - 4x CCDs (TBC)
- All characterized in similar way as MOONS detectors.
- All data from characterization automatically uploaded to the ESO archive and available for instrument consortia to use for modelling and tracking detector performance over time.

Detector characterization facility block diagram

See: Bezawada et al. AN Apr. 2023 https://doi.org/10.1002/asna.20230061

Modelling with Pyxel Open Source Detector modelling framework

Pyxel architecture (v2.0)

- Pyxel is a novel, end-to-Input photon distribution end detection chain simulation framework in Python.
- It hosts and combines existing and new models of detector effects.
- Open-source multipurpose tool supporting instrument development during all phases.

Output image

model name

optional

+ES

• e e sa

Pyxel: Three running modes

Exposure mode

the simple mode for health check or simulation of nondestructive readout

Detector

Observation mode

Detector

multiple pipelines with a range of model or detector parameters (parallelization possible)

Detector

Detector

Calibration mode

optimize model or detector parameters to fit target data sets (model fitting, instrument optimization). Can run on a grid of computers or a computer cluster.

eesa

Output example: calibration mode

- The pyxel H4RG generic pipeline is calibrated against some MOONS lab data (PTC).
- Comparison between measured photon transfer curve and simulated one (for best fitting params)
- Output is a calibrated model: a physical model for non-linearity in SFD type pixel. The free params are: donor density, diode diameter, and fixed capacitance C_f.
- Good match until saturation is reached (this model does not quite reach saturation).

34

Pyxel: try it yourself

- Pyxel the collaborative detection simulation framework version 2.0 is out!
- Easier than ever to install: one-liner installation
- Easier than ever to try: Running on binder, runs remotely on browser, no install
- Easier than ever to learn:
 - Tutorials and examples available
 - Detailed documentation
- Very flexible framework: please abuse it and surprise us!
- Can be embedded in your existing simulator and vice versa
- Join the community and make Pyxel the engine behind your simulator!

https://esa.gitlab.io/pyxel/

Check out the Pyxel Demo at SPIE 2024!

Conclusions

H4RG-15 detectors for MOONS fully characterized and standardized data products available.

Good performance over the 5 devices, with some variability (especially in persistence). Program spurred development of Rev2 ROIC for H4RG-15 to reduce glow.

MOONS Characterization Data products are in use for pipeline science data correction as well as for detector modelling. (Future: ELT projects)

Let's discuss at coffee break:

What uses do detector characterization data products from the lab have? How well do these detector properties have to be characterized for each use?

Share examples from your own projects.

Thank you!

Elizabeth George egeorge@eso.org

- @ESOAstronomy
- @esoastronomy
- 🥑 @ESO

f

- in european-southern-observatory
- @ESOobservatory

