

Single electron Sensitive Readout (SiSeRO) devices: A novel X-ray detector technology for future X-ray missions

Tanmoy Chattopadhyay

KIPAC / Stanford: Sven Hermann, Peter Orel, Glenn Morris, Haley Stueber, Steve Allen **MIT-LL:** Chris Leitz, Kevan Donlon **MIT:** Mark Bautz, Eric Miller, Gregory Prigozhin

Our lab (KIPAC) and ongoing projects ...

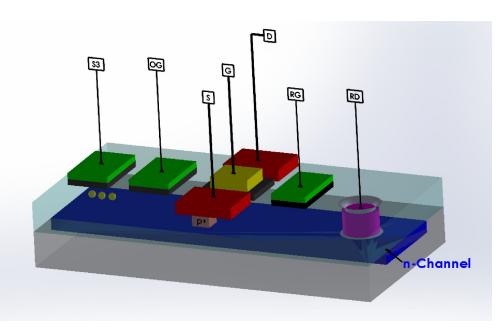
Currently focused on X-ray astronomy science (hardware work)

Athena (~2036)

- Next European X-ray
 flagship mission
- WFI DEPFET detector readout electronics

AXIS X-ray probe (~2032)

- ~\$1B class NASA concept
- Development of focal plane array with MIT
- JFET based CCD detectors


Future missions

- Sub-electron noise (soft X-ray response, absolute calibration),
- very fast (large telescope),
- mega-pixel imagers

SiSeRO detectors

SiSeRO detectors (in CCD form)

[1] J. Kemmer and G. Lutz, "New detector concepts," NIM-A 253(3), 365–377 (1987).

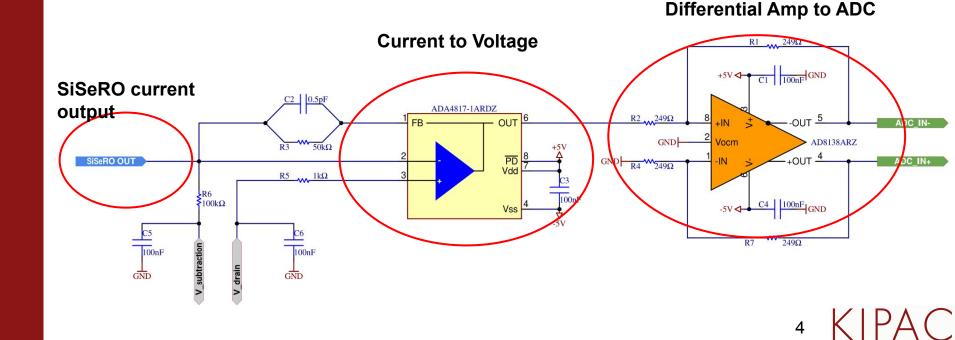
[2] Matsunaga, H. Yamashita, and S. Ohsawa, "A highly sensitive on-chip charge detector for ccd area image sensor,"

IEEE Journal of Solid-State Circuits 26(4), 652–656 (1991)

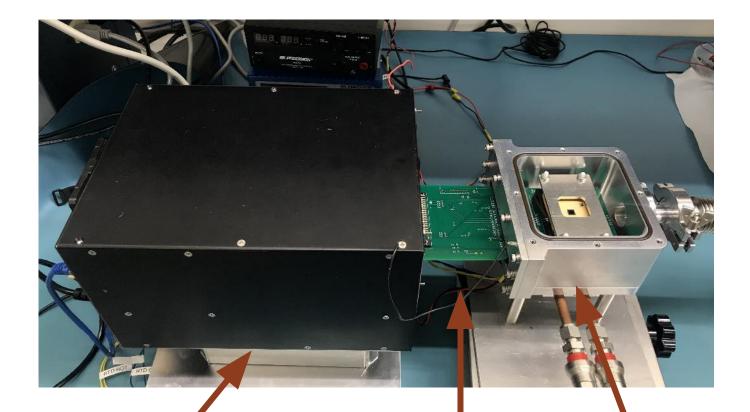
Transfer channel under the p-Mosfet. Electrons in the channel modulate the transistor current [1,2]. A trough implants help confining the charge under the mosfet.

- Higher conversion gain than conventional CCD technology (better noise)
- Compact layoutKTC noise free!
- Expected Read noise ~1 e- noise at 1 MHz speed for 1500 pA/e sensitivity.

RNDR: Possibility of measuring the same charge multiple time (repetitive Non-Destructive readout)


Readout electronics

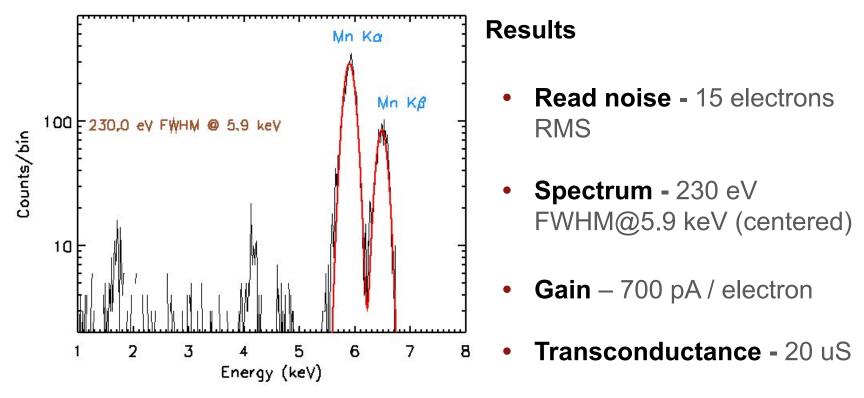
At SU, we developed a readout module to characterize the SiSeRO devices.


- Drain current readout.
 - Discrete and ASIC readout system
 - . An I2V preamp followed by an ADC driver
- . Simulations:
 - The bandwidth ~ a few MHz
 - Noise: <1 pA / sq(Hz) current density

Detector Board carrying an ASIC

Test Setup ("Tiny box") for SiSeRO

STA Archon controller supports raw data mode for full video waveform capture PCB with amplifier and support electronics Detector module in vacuum & cooled by TEC (-40 C)

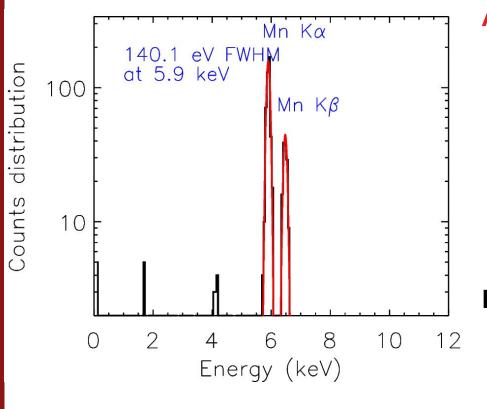

SiSeRO waveform

Parameters to optimize: 3.6 Rg, RD bias Reset OG **MOSFET Source**, • 3.4 Charge **Drain, Gate bias** X 10⁴ transfer 3.2 ND 3.0 2.8 50 150 200 250 10Sample (10 ns binning) Pre-charge transfer **Post-charge transfer**

625 kHz readout (1.6 us pixel)

6

Spectral and noise performance for a SiSeRO prototype (surface channel)


The prototype uses a surface transistor channel (Higher noise from trapping and detrapping of carriers in the Si interface states)

First results for a SiSeRO device!

(Chattopadhyay et al. 2022, JATIS)

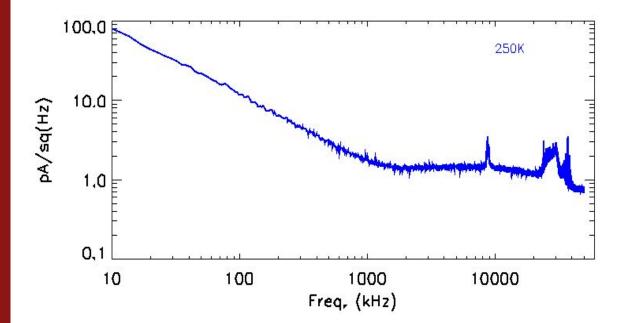
First generation SiSeRO results (buried channel)

(Chattopadhyay et al. 2023, JATIS)

A buried channel SiSeRO

- The transistor channel conduction is below the surface
- No excess noise from trapping and de-trapping of charge carriers from the Si interface states

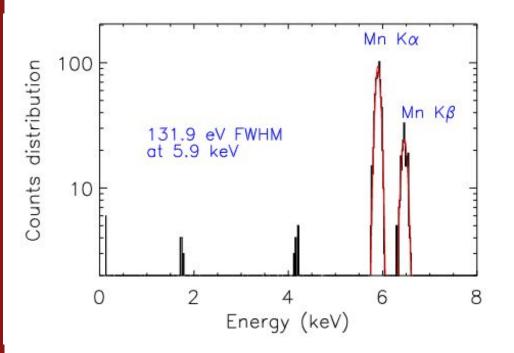
Results


- Read noise 4.1 electrons RMS
- Spectrum 140 eV FWHM@5.9 keV
- Gain 800 pA / electron
- Transconductance 25 uS

Substantially improved (competitive) performance!

1/f noise in first generation SiSeROs

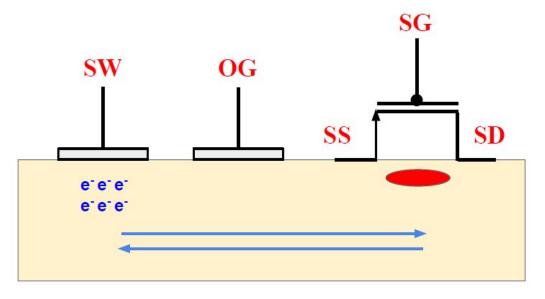
SiSeRO noise spectral density

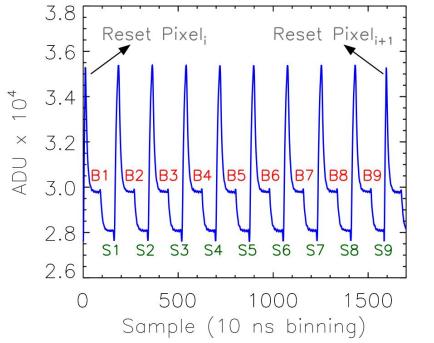

- Thermal noise floor < 2 pA/√Hz current noise density.
- Large 1/f noise with corner frequency ~ 1 MHz

Flexibility of saving raw digital waveforms from the Archon controller

• FFT on the digital waveform (10 ns sample size)

1/f noise in SiSeROs: Digital CDS filtering



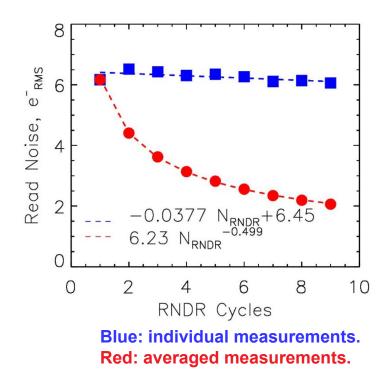

Digital filtering

- low frequency correlated noise affects the baseline and signal levels leading to additional noise after CDS.
- Therefore the **default box** filter (sinc response in the frequency domain) is not ideal when noise is dominated by both thermal and 1/f noise
- FFT filter: An optimized digital CDS filter to suppress the 1/f noise.
- Noise improved by ~15-20 % to 3.5 e- RMS
- FWHM improved to 132 eV @ 5.9 keV

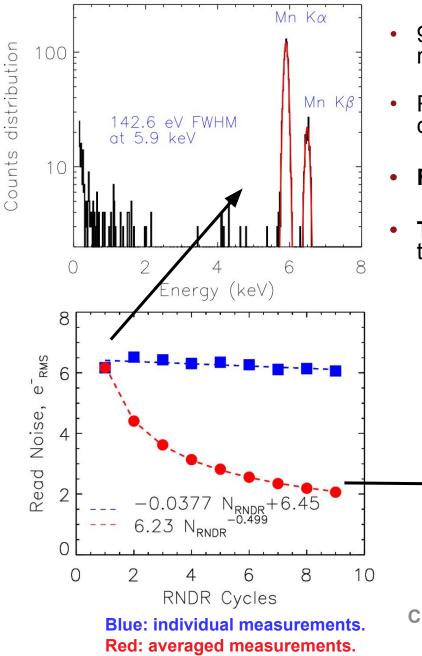
RNDR in SiSeROs

- Charge signal remains unaffected during the readout
- For N measurements, Noise $\sim 1/\sqrt{N}$
- Clocked the output gate (OG).

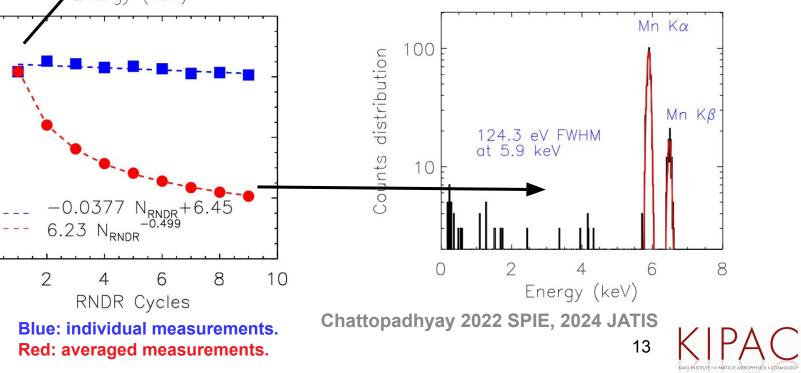
- 9 RNDR cycles: 9 baselines and 9 signals
- each pixel is 16 us readout speed is ~63 kHz

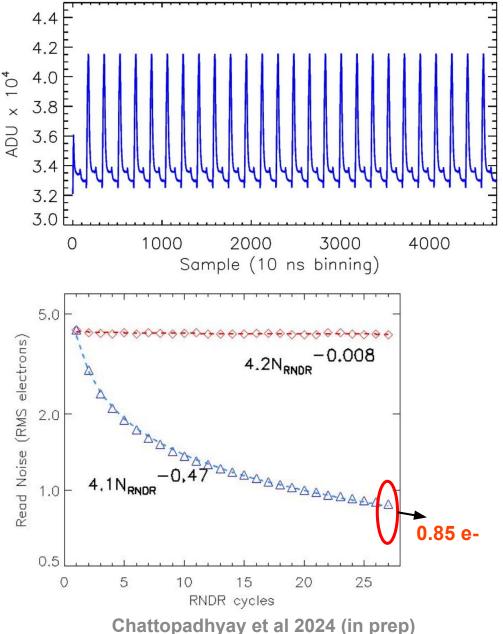

First demonstration of RNDR on the SiSeRO devices !

Chattopadhyay 2022 SPIE, 2024 JATIS


First RNDR results in SiSeROs

- 9 RNDR cycles (each pixel 16 us; 63 kHz readout)
- Read noise for 9 Individual cycles almost constant !
- Final noise is 2 e- RMS from 6 e- RMS
- The final FWHM @ 5.9 keV is 124 eV ~ close to the Fano limit



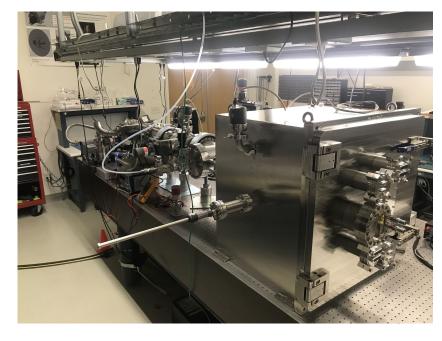

First RNDR results in SiSeROs

- 9 RNDR cycles (each pixel 16 us; 63 kHz readout)
- Read noise for 9 Individual cycles almost constant !
- Final noise is 2 e- RMS from 6 e- RMS
- The final FWHM @ 5.9 keV is 124 eV ~ close to the Fano limit

Latest RNDR results: sub-electron noise

- 27 RNDR cycles (~50 us pixel, 21 kHz readout)
- Read noise and gain for 27 Individual cycles almost constant - no charge loss

- The averaged noise follows 1/√N trend
- Final noise is 0.85 e-RMS


Note: FNAL/LBL group have also demonstrated sub-electron noise with n-mosfet SiSeRO variant (hole collecting CCD)

Improved test facilities for RNDR

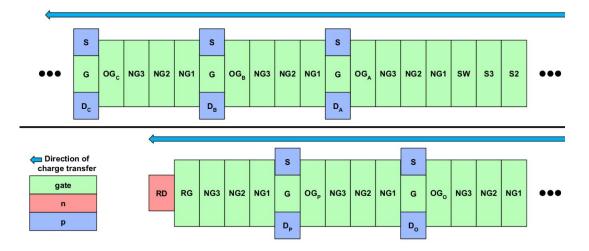
Experiment in the beamline (-100 C)

- Current tests are done at -40 C, so limited to 27 cycles to control the thermal leakage
- Beamline cryocooler can provide -100 C Setup utilizes ASIC readout system.
- - supports up to 16 outputs
- Target ~200 RNDR cycles
- Expected noise ~ 0.3 e-

3 meter long X-ray beamline

- -100 C cooling
- Multiple mono-energy line in 0.67 - 8 keV

Novel SiSeRO designs under fabrication!


512 x 512 pixel device with 16 SiSeRO outputs

testing 4 different amplifier variants

- Improved buried channel design
- Trough location optimization
- Better isolation of the MOSFET

Amplifier cluster of 16 SiSeROs in series

- 16 SiSeROs in series at the output
- A factor of 4 improvement in noise at the same readout rate Available by the end of 2024! (ASIC based readout)
- FNAL/LBL also exploring similar concept



16

Active Pixel SiSeRO sensor

Preliminary SiSeRO matrix in fabrication

- Combines the proven X-ray performance of CCDs with the architectural advantages of active pixel sensors
- 2 adjacent SiSeROs as an unit
- Better charge transfer
- Effectively twice the RNDR cycles for the same integration

Full 64 x 64 SiSeRO matrix in development

- NASA APRA proposal submitted
- Uses Readout ASIC + Switcher ASIC scheme

Summary and Future plans

• SiSeRO is a novel output stage for CCDs:

- Fabricated at MIT-LL using the established MIT-LL CCD process technology.
- Charge at the back gate of a p-MOSFET modulates the transistor current.
- Improved gain and responsivity compared to conventional CCD output stages.
- Characterization of SiSeROs with drain readout at Stanford:
 - Encouraging results for buried channel SiSeROs ! 3.5 e- read noise, 130 eV FWHM at 5.9 keV for single read measurements.
 - Demonstrated RNDR! Sub-electron noise with 27 RNDR cycles.

Development path for SiSeRO technology

- Next generation SiSeROs currently in fabrication.
- Multiple (16) SiSeRO outputs on a single CCD
- Multiple (16) SiSeROs in series at CCD output
- First SiSeRO active pixel matrix (APS).

SiSeRO technology opens a path towards fast, sub-electron noise, megapixel spectral-imaging for X-ray (and other) applications!

