High Performance Infrared Focal Plane Arrays Good Attributes and Bad Attributes

Prepared by Majid Zandian, Bo Shojaei, and James Beletic

Presented by James W. Beletic, Ph.D. Chief Scientific Officer Teledyne Digital Imaging

Presented at Image Sensors for Precision Astronomy ISPA 2024 Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at SLAC 12 March 2024

Hybrid CMOS Imaging Sensor

Periodic Table											
1 H Hydrogen	. 2				Π	III	IV	V	VI		2 He Helium
1.0 4 Li Be Lihium Beryllum 0.9 9.0 11 12 Na Mgg Sodium Mggnesium 23.0 9.0						5 B Boron 10.8 13 Auminum 27.0	6 Carbon 12.0 14 Silicon 28.1	7 N Nitro gen 14.0 15 Phosphorus 31.0	8 0 0ngen 16.0 16 S Sulfur 32.1	9 Fluorine 19.0 17 Cl Chlorine 35.5	10 Neon 20.2 18 Arr 40.0
19 20 K Ca 99.1 40.2 37 38 Rb Sr Rubidium Strontium 87 88 Caesium Barium 132.9 137.4 87 88 Fr Ra Prandum Pardium Paradum Pardium	21 22 2 Sc Ti Iten nium Vana 45.0 47.9 56 39 40 4 Y Zrconium No 88.9 91.2 9 57-71 72 7 Hf Tanium 18 89-103 104 10 Rt bertordium 261 20	23 24 25 Molium Cr Mn 0.9 52.0 Manganes 52.0 Molybenum 54.9 H 42 43 Ib Mo Tc Molybdenum 99 73 74 76 Re Tung sten 183.9 107 130 108 107 Ob Sg Bh Seaborgium Bohrium 262	26 27 Fe Co ion 65.9 44 45 Run Rhodium 101.0 102.9 76 77 Os Ir 190.2 108 Hassium 266	28 29 Ni Cu Nickel Copper 58.7 63.5 46 A7 Pd Ag Palladium 105.4 106.4 107.9 78 79 Pt Au Platinum Gold 195.1 197.0 110 Ununnillum 272 272	30 Zn 26.4 48 Cdd Cadmium 112.4 80 Hg Mercury 200.6	31 Ga Gallium 89.7 49 In hdium 114.8 81 Thallium 204.4	32 Ge Germanium 72.8 50 Sn Tin 118.7 82 Pb Lead 207.2	33 Asenic 74.9 51 Sb Attimony 121.8 83 Bismuth 209.0	34 Se Selenium 79.0 52 Telurium 122.6 84 PO Polonium 210.0	35 Br Bromine 79.9 53 I boline 126.9 85 At Attaine 210.0	38 Krpton 83.8 54 Xe Xen 131.3 86 Rn Radon 222.0
Si - IV semiconductor							Alkalimetak Alkalime earth metak				
HgCdTe - II-VI semiconductor InGaAs & InSb - III-V semiconductors								Transition metals			
57 58 La Ce cerium 198.9 90 Ac Th Actinium Thorium Pro	59 60 8 Pr Nd P 140.9 144/2 14 91 92 9 Pa U No No vota cfinium Uranium Nept. Nept.	ethium 17.0 33 94 95 94 95 94 95 94 95 94 95 94 95 94 95 95 94 95 94 95 95 94 95 95 94 95	64 65 Gd Tb Cadolinium Terbium 157:3 96 96 97 Cm Bk Curium Berkellum	66 67 Dypprosium 102.5 99 Cf Es Calibrium Ensteinlur	68 Er Erbium 167.3 100 Fm Fm	89 Tm Thulium 168.9 101 Md Mendelevium	70 Yb Ytterbium 173.0 102 No Nobelium	71 Lu Lutetium 175.0 103 Lr Lawrencium	Per Sel	oor metak mi-metak on-metak oble gases	

Tunable Wavelength: Unique property of HgCdTe

Hg_{1-x}Cd_xTe Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

4

II III IV V VI

Si

As

Sb Те

Bi

В

HgCdTe Cutoff Wavelength

Atmospheric Transmission

The cutoff wavelength, λ_{co} , is defined as the wavelength at which the absorbed optical power falls to half of the maximum value.

Ground-based astronomy cutoff wavelengths based on atmospheric windows						
Near infrared (NIR)	1.75 µm	J,H				
Short-wave infrared (SWIR)	2.5 µm	Ј,Н,К				
Mid-wave infrared (MWIR)	5.3 µm	J,H,K,L,M				

5

Absorption Depth of HgCdTe

В

Ga

In

hdium

Zn

Cd

Cadmiun 112.4

Hg

Substrate Removed HgCdTe Provides Simultaneous UV-Vis-IR Light Detection

Hybrid Imager Cross Section

Pixel amplifier (charge to voltage converter)

HxRG Family of Hybrid Imaging Sensors

- <u>H</u>: HAWAII: <u>H</u>gCdTe <u>A</u>stronomical <u>W</u>ide <u>A</u>rea <u>I</u>nfrared <u>I</u>mager
 - <u>x</u>: Number of 1024 (or 1K) pixel blocks in x and y-dimensions <u>R</u>: <u>R</u>eference pixels
 - G: Guide window capability
 - Substrate-removed HgCdTe for simultaneous visible & IR
 - Hybrid Visible Silicon Imager; Si-PIN (HyViSI)

H2RG

Good Attributes of HxRG arrays

- High Quantum Efficiency
- Low Dark Current
- Low Readout Noise
- Very low power
- Many pixels:
 - 1, 4, or 16 million pixels per array (H1RG / H2RG / H4RG)
 - Mosaics up to 300 million pixels (Roman Space Telescope)

Teledyne Visible and IR Detectors for Euclid

Cesa

- Euclid is the ESA's flagship astronomy mission.
- Launched on July 1, 2023.
- Euclid has a 1.2-m diameter large field of view telescope with visible and infrared arrays produced by Teledyne:
 - 600 million visible pixels
 - 36 4K×4K (16 Mpix) CCDs
 - 64 million infrared pixels
 - 16 H2RG (4 Mpix) SWIR arrays
 - 16 SIDECAR ASIC modules
- Largest IR focal plane array launched into space
- 24 flight candidate H2RGs delivered to NASA
- NASA tested and delivered 20 flight grade H2RG arrays to ESA, all of which greatly exceed requirements

H2RG 2K×2K pixels

18µm pitch

Quantum Efficiency of 24 flight candidate H2RGs

Measured by Goddard SFC Detector Characterization Laboratory

The "Hidden Galaxy" (IC 342)

- One hour observation
- 8800 x 8800 pixels
- Four bands of VIS and NISP data observed
- Three bands displayed:
 - 0.7 $\mu m \rightarrow blue$
 - 1.1 $\mu m \rightarrow$ green
 - 1.7 $\mu m \rightarrow red$

H2RG IR Detectors for Euclid

Dark Current at 100K

Median = 0.012 e-/pix/sec More than 5X better than specification (0.07 e-/pix/sec) 2.3 μm cutoff wavelength

Readout Noise Median = 6.8 e-40% better than specification (11.5 e-)

Imperfections of HxRG arrays

1. Persistence	Memory (afterglow) of previous image Bright calibration frames can cause big problems
2. Inter-Pixel Capacitance	Electrical crosstalk
3. Brighter-fatter effect	Intensity-dependent Point Spread Function (PSF)
4. Non-linearity	For highest precision, must correct each pixel
5. Charge diffusion	Pixel PSF is not ideal top-hat function
6. Cross Hatching	Intra-pixel QE variation
7. Bad pixels / cosmetics	Can dither to "fill in" bad pixels
8. Epoxy voids	Slight responsivity difference corrected by flat fielding

HxRG Imperfections: #1 Persistence

- European Southern Observatory CRIRES+ instrument has 3 MWIR H2RG arrays
- To demonstrate persistence:
 - CRIRES+ detectors exposed to an LED flash for a few milliseconds.
 - LED switched off and the detectors are read out with reset-read every 30 sec for a few minutes

Courtesy of Derek Ives, European Southern Observatory

HxRG Imperfections: #1 Persistence

The Roman Space Telescope (RST) worked closely with Teledyne during 2014-2018 to develop a new passivation process (PV3) that has shown near zero persistence.

The low persistence process works
But has low yield, higher cost
PV3 is <u>not</u> Teledyne's baseline process
Customers can request PV3 (the

RST process) for custom production

Data and figures courtesy of Bob Hill, Goddard Spaceflight Center Detector Characterization Laboratory, and RST Program Office

HxRG Imperfections: #2 Inter-pixel capacitance (IPC)

First identified in a 2005 paper

CONVERSION GAIN AND INTERPIXEL CAPACITANCE OF CMOS HYBRID FOCAL PLANE ARRAYS

Nodal capacitance measurement by a capacitance comparison technique

G. Finger¹, J. Beletic², R. Dorn¹, M. Meyer¹, L. Mehrgan¹, A.F.M. Moorwood¹, J. Stegmeier¹ ¹European Southern Observatory, ²Rockwell Scientific Company

€ ⊖

Reset

Voltage

Reset

Pixel

Voltage

Output

Silicon Detector Layer

Reset

Pixel

Voltage

Output

Reset

Voltage

Figure 10. Autocorrelation of CMOS Hawaii-2RG hybrid arrays. Left: λ_c=2.5 μm HgCdTe array, φ=1.23. Right: Si-PIN HyViSI array, φ=2.03.

HxRG Imperfections: #3 "Brighter-fatter" effect

Figure courtesy of Roger Smith, Caltech

Pixel grows as charge accumulates so the point spread function (PSF) may be flux dependent

HxRG Imperfections: #4 Non-linearity (of source follower pixel)

Examples from H1RG MWIR testing

HxRG Imperfections: #5 Charge Diffusion

Ideal pixel response ("top-hat" function) Charge diffusion function

HxRG Imperfections: #6 Cross Hatching

- Cross hatching is an <u>intra-pixel</u> effect and very hard (impossible?) to correct with post-detection image processing.
- Need to find and fix the root cause.
- Cross hatching observed in QE map is believed to be correlated with detector material morphology
- We believe we understand the physical mechanisms governing the morphology and can control it to an impactful degree
- Process developments are underway, full focal plane array testing has not yet started

Optical microscopy images are presented in false color and with increased saturation to help the viewer distinguish surface cross hatch.

22

Making a higher precision focal plane array (FPA) starts with the Pixel Better to use a Capacitive TransImpedance Amplifier (CTIA)

No correlated double sampling (CDS) in this circuit

- For high frame rate operation, such as Earth Observation, CDS is usually included in the pixel.
- Since in-pixel CDS adds circuitry and increases noise, in-pixel CDS not be optimal for an astronomy CTIA array.
- The circuit shown allows "sample up the ramp" for lowest noise and detection of cosmic ray hits.

The challenges for using a CTIA are:

- CTIA must always stay on, so higher power
- Ensuring no ROIC glow
- Achieving low readout noise

CTIA addresses Persistence, IPC, Brighter-fatter effect

- The input gate to all CTIAs are held at the reset voltage during operation (image integration).
- The depletion region stays constant, with no de-biasing and biasing of trap states.
 - This will eliminate persistence.
- No inter-pixel capacitance since all pixel gates at same voltage.
- No brighter-fatter effect since the voltage fields in the HgCdTe stay constant during exposure.

Example from testing of a CHROMA-A CTIA pixel

Optimizing the HgCdTe detector layer

- Eliminate / minimize cross hatching with improved growth / processing
- Use low trap passivation process (PV3) developed for RST to reduce persistence (if using HxRG)
- Minimize charge diffusion by fully depleting detector layer
 - Charge diffusion function becomes close to an ideal top-hat function

An optimized CTIA + better HgCdTe detector can be a nearly ideal focal plane array

- Use Capacitive TransImpedance Amplifier (CTIA) pixel
 - Eliminates:
 - Persistence
 - Inter-pixel capacitance
 - Intensity dependent PSF (no more "fatter-bigger" effect)
 - Produces very linear response

• Utilize the latest advances in HgCdTe growth and processing

- Eliminate cross hatching
- Use low trap process (PV3) to reduce persistence (if using an HxRG readout circuit)
- Operate the HgCdTe in fully depleted mode
 - Sweep charge to p-n junction to minimize charge diffusion
 - Full depletion will also keep traps empty, reducing persistence (for HxRG arrays)

GeoSnap Focal Plane Arrays Use the CTIA Pixel

GeoSnap-18 2K × 2K Focal Plane Module	 GeoSnap-18 18-micron pixel pitch CTIA unit cell with 2 gains / full well (180 ke- and 2.7 1K × 512-pixel stitch block, can fabricate up to 3K × 3 Snapshot, integrate while read Fully digital chip, 14-bit ADCs Full frame rate: 100 Hz for 2K × 2K, 250 Hz for 3K × 5 ROIC formats fabricated: 1K × 512, 2K × 512, 2K × 2K Focal plane arrays made and tested with several type Silicon (VNIR) & HgCdTe for SWIR (2.5 µm), MWIR (5.3 µ 	VLWIR GeoSnap-18 2K×2K FPM delivered to the European Southern Observatory for the ELT METIS instrument	
GeoSnap-10 4K × 4K Focal Plane Module	 GeoSnap-10 10-micron pixel pitch CTIA unit cell with 2 gains / full well (120 ke- and 1.2) 2K × 1K-pixel stitch block Snapshot, integrate while read or integrate then read Fully digital chip, 14-bit ADCs Full frame rate: 60 Hz for 4K × 4K Focal plane arrays made and tested with HgCdTe detter sWIR (2.5 μm), S/MWIR (3.8 μm), MWIR (5.3 μm) 	4K×4K is TRL-9 Operating in Space 2 Me-) d	

Teledyne Enabling humankind to understand the Universe and our place in it

Reserve your calendars! Scientific Detector Workshop 2025 (SDW2025) 6 – 10 October 2025

Canberra, Australia

A workshop for the scientists and engineers who develop, produce, implement, and operate the most advanced imaging sensors used in scientific instrumentation:

- Talks from leading experts in science, instrumentation, and imaging sensors
- Extensive time for discussions & interactive roundtables
- Group activities include numerous social and cultural events

