VERA C. RUBIN

INTRODUCTION

Rubin Observatory has a unique optical beam
geometry. The large collecting area of the
primary mirror, combined with atmospheric
seeing-limited imaging across the wide

(9.6 deg?) field-of-view, enables the survey
mission.
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RAFT TOWER MODULE LEVEL METROLOGY

Absolute height maps (e.g. Figure 1) were generated
using the measurements made for each RTM and
Corner Raft Tower Module. Figure 2 is a side-by-side
comparison of all RTMs integrated in the focal plane.
Combining these with metrology details of the
manufactured Cryostatic GRID (integrating structure)
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FAST OPTICAL BEAMS (AND WIDE
FOV) REQUIRE PRECISE SENSOR
SURFACE DEFINITION

compliant with requirements.
Table 1 below summarizes the inspection,
testing and metrology program executed over
several years and across several locations.
Figure 1 is an example of an RTM-level figure
measurement, representing 4% of the focal

FOCAL PLANE METROLOGY

Once all RTMs were integrated into the Cryostat, full
focal plane scans were performed, re-referenced
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the Wavefront sensors each lies within 2 um of the best-fit
Focal Plane height. The individual Wavefront sensor halves
each lie at most 7 um from their nominal position. Four of the
wavefront sensors lie within P-V requirement of 10 microns,
while the other 4/8 lie within a P-V of 15 microns.
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