Cosmology Large Angular Scale Surveyor Recent progress and the 40 GHz results Yunyang Li JOHNS HOPKINS SLAC FPD Seminar 2023

Cosmology learned from the Cosmic Microwave Background

Improved anisotropy measurements

Planck

Cosmology learned from the Cosmic Microwave Background

Condordance model of cosmology

• Dark matter and dark energy, in addition to ordinary matter. • Geometry (flat) and age of the universe (13.8b yr). • Initial Gaussian fluctuation set up during inflation. • CMB released at recombination, before the universe was reionized.

NAOJ

• Angular power spectra describe the amount of power in each spherical harmonic mode.

• Angular power spectra describe the amount of power in each spherical harmonic mode.

• Angular power spectra describe the amount of power in each spherical harmonic mode.

- Angular power spectra describe the amount of power in each spherical harmonic mode.
- Physical processes operate on different scales.
- The overall shape/amplitude of the spectrum tells us cosmology!

Ground-base experiments have pushed the frontier in CMB measurements in small angular scales

and in polarization

M. Petroff

CMB angular spectra: polarization

- Primordial B mode from inflation is most separable from lensing effect at large scale.
- The Thomson scattering from reionization only appears on large-scale E mode.

E mode

CMB angular spectra: polarization

- Primordial B mode from inflation is most separable from lensing effect at large scale.
- The Thomson scattering from reionization only appears on large-scale E mode.
- The low- ℓ shape of the E mode spectra informs the reionization history.

CMB Angular Spectra: polarization

- Primordial B mode from inflation is most separable from lensing effect at large scale.
- The Thomson scattering from reionization only appears on large-scale E mode.
- The low- ℓ shape of the E mode spectra informs the reionization history.

The CLASS Experiment

Site and scan strategy

- Access to large fraction of the sky.
- Constant elevation scanning \rightarrow observe 75% of the sky (minus sun avoidance) daily.

D. Valle

Multifrequency design

• Four-frequency designed to avoid atmospheric transmission bands while maintaining wide sampling around CMB minimum to handle foregrounds.

Detector technology

- CLASS uses smooth-walled feedhorn to couple radiation onto orthogonal pairs of transition-edge sensor (TES) bolometers $(T_{\rm c} = 150 \,{\rm mK}).$
- Data are readout with SQUID-based time-division multiplexing.

Radiation -

CLASS Instruments

Polarization modulation: VPM

Polarization modulation: 40 GHz data

Further reading

- CLASS 40 GHz Stability: Harrington+2021 (ApJ 929 212)
- Multifrequency Stability: Cleary+ in prep.

Harrington+2021

Polarization modulation: Boresight rotation

- 3-axis mount supports boresight rotation.
- Boresight rotation enables better angle coverage.
- Daily boresight rotation assignment (15 degree increment)

Datta+2023

The 40 GHz Survey

Scientific results: Eimer, Li, Brewer, Shi+2023 (arXiv:2309.07221) Data pipeline: Li, Eimer, Osumi+2023 (ApJ 956 77)

Survey timeline

100%

ALL PROPERTY

Viteral ...

Data reduction pipeline

Li+2023a Adapted

Maximum-likelihood map-making

Iterative correction for an optimal and unbiased (<2.5% at $\ell \leq 5$) noise weighting.

Systematic issues

Real data are more complicated than the sky signal + gaussian noise scheme..., the extras are systematics.

Chan+ in prep.

and others ...

Systematic issues: filtering and transfer function

- Systematic signals that are quasicovariance with the sky needs to be filtered. These includes signals **from** *wind/ground-pickup/electric*coupling/atmospheric circular emission etc...
- The temporal variance of the signal necessitate short time-scale filters (~3h)
- Filters degrade the signal recovery at large angular scales.

demodulation

Systematic issues: null test

Q-band Focal Plane

Geometric splits

Atmospheric loading; circular polarization; optics symmetry; Wind-induced polarization signal; VPM modeling.

Polarization sensitivity/ VPM related

VPM modeling, VPM related "polarization leakage''

Detector readout

Systematic issues: null test

Half survey

Instrumental upgrades, and other secular evolution of the telescope Timescale: few years

Scan related Az-servo motor motion; ground pickups Timescale: 10 minutes.

Diurnal evolution Far-side lobes; instrument. temperatures; environment factors. Timescale: few hours

Systematic issues: null test

Null spectra

Null maps

PTE distribution (among the splits)

peccia							
		Split	EE	BB	EB	VV	VE
B	EB						
	т., . Т.І.,	top/bot	0.11	0.14	0.42	0.08	0.50
······································	ĬŢŢŢŢŢŢŢŢŢŢŢŢŢ	left/right	0.31	0.13	0.14	0.40	0.50
		radial	0.84	0.55	0.43	0.84	0.91
/E		horizontal	0.17	0.29	0.50	0.23	0.60
·₁···₁·	<u>Ĭ</u> <u>Ĭ</u> ······ _↓ ·· <u>↓</u> · <u>↓</u> · <u>↓</u> · <u>↓</u> · <u>↓</u> ·	vertical	0.87	0.43	0.91	0.16	0.98
		quadrupole	0.98	0.09	0.85	0.99 ₉	0.65
75 100	25 50 75 100	MUX halves	0.23	0.97	0.92	0.12	0.50
pole <i>l</i>		MUX parity	0.29	0.93	0.91	0.36	0.94
		plus/minus	0.62	0.69	0.53	0.29	0.54
		VPM syn.	0.49	0.67	0.75	0.66	0.94
	overestimated \rightarrow \square ^{1.0}	bs in/out	0.02	0.81	0.43	0.58	0.11
VB	noise	bs pos/neg	0.22	0.02	0.30	0.24	0.09
		east/west	0.04	0.99	0.74	0.86	0.57
	- 0.6	az velocity	0.76	0.99 ₉	0.67	0.04	0.89
		half sweep	0.12	0.81	0.52	0.61	0.36
	0.4	midnight	0.53	0.43	0.11	0.78	0.01
	- 0.2	8h in/out	0.43	0.45	0.74	0.48	0.44
	excessive	Moon	0.11	0.41	0.67	0.38	0.29
	systematics -> - 0.0	survey	0.43	0.69	0.04	0.13	0.20
		,					

Probability-to-exceed (PTE)

Eimer+2023 Adapted

-10 _

-100

Li+2023a Adapted

* Maps are smoothed to 2 degree FWHM for visualization

Maps and other auxiliary data are available on LAMBDA

Linear polarization: maps

- 75% Sky maps from the ground.
- Significant improvement over satellite range.

(filtered/scaled)

CLASS 40 GHz

Linear polarization: comparison

- Linear mapper: map-domain filter template.
- Composite with WMAP: unbiased synchrotron map at 40 GHz!

Filter template

CLASS Maps

WMAP 40 GHz

Composite CLASS+WMAP at 40 GHz

Shi+ in prep.

Synchrotron: angular power spectra

Synchrotron Angular Spectra

Galactic Avoidance

- Recovery of large angular scale synchrotron (with filter correction)
- Consistent spectral shape (approx. power-law) with satellite measurements
- E/B asymmetry: BB/EE \approx 0.3-0.4

Synchrotron: spectral energy distribution

Synchrotron spectral energy distribution

*Assuming power-law angular spectra

Galactic Avoidance

$$C^{1\times 2}(\ell) = A\left(\frac{\nu_1\nu_2}{\nu_c^2}\right)^{\beta_s} \left(\frac{\ell}{40}\right)^{\alpha}$$

• Diffuse synchrotron shows consistent $\beta_s \approx -3.0 \pm 0.1$ in polarization within the $20 \sim 40$ GHz range.

Synchrotron: spectral energy distribution spatial variation

- Combining WMAP K/Q and CLASS
- The brightest Galactic region show significant synchrotron index variation.
- Variation of order 0.3 is robust against filter effects/Galactic dust

Circular science: atmospheric

Atmospheric Emission

data

model

circular polarization maps in horizontal coordinates (az, el)

- Zeeman splitting of the molecular Oxygen in the Earth magnetic field.
- Earth magnetic field defines the spatial pattern of the signal (dipole)
- This signal is treated as systematics and filtered out for the cosmological products

Further reading

- Theory and 40 GHz observation Petroff+2020 (ApJ 889 120)
- Multifrequency observation Essinger-Hileman+ in prep.

Circular science: astrophysical

- Circular polarizations are expected from primordial magnetic fields/Faraday conversion mechanisms. The most prominent one is expected from the Galactic synchrotron, of order $10^{-6} \mu \text{K}^2$.
- All mechanisms predict steep and negative frequency scaling, making 40 GHz most sensitive to these mechanisms.
- CLASS places best upper limit at 40 GHz at $10^{-1} \mu K^2$

Further reading

- Circular polarization physics and 40 GHz constrains Padilla+2020 (ApJ 889 105)
- Multifrequency observation Essinger-Hileman+ in prep.

Future Prospects

Multifrequency data

PRELIMINARY!

Hardware upgrades

Reflective half-wave plate

- Reduce modulation emission/systematics.
- "drop-in" replacement for CLASS.
- New investigation on modulation technique.

Remove environmental closeout

Reduce the varying azimuth-covariant signals

Scan elevation $45^{\circ} \rightarrow 55^{\circ}$

- Reduce ground pick-ups
- Balancing the sky coverage.

- All-sky camera for cloud monitor Improve data selection

90 GHz upgrades & new 90 GHz array

- New designs improves stability and optical efficiency
- Get more detectors on sky!

Núñez+ in prep.

Software upgrades sky systematics reduction - Less aggressive filtering - Strategic filtering with improved data selection Improve large scale recovery 1.0 0.8 0.6 0.4 0.2 -0.0 100 50 20 2 10 5 Angular Scale ℓ

Thank you!

Summary

- CLASS delivers linear and circular polarization maps covering 75% of the sky.
- First end-to-end demonstration of the recovery of large angular scale polarization from the ground with the VPM technology.
- The initial processing recovers 75% (45%) of power at angular scales $\ell = 20 \ (10).$
- At 40 GHz, CLASS observe the synchrotron radiation that is consistent with previous result but with superior sensitivities in angular range $10 < \ell < 100$.
- Established solid understanding of the related systematic issues, and their mitigation strategies. Software and hardware solutions are both on the way.
- Multifrequency maps and more cosmological science are underway. Stay tuned!

40 GHz Results Eimer+2023

40 GHz Data Pipeline Li+2023a

backup slides

40 GHz survey timeline

54

Hits maps

Li+2023a

Systematic issues: impacts

Known systematics exist beneath the noise level, but they are irrelevant for the targeted signals

56

Polarized atmospheric clouds

- enhance its polarization through the Rayleigh
- This one factor of polarized low-frequency

circular polarization mechanisms

Source	Mechanism for CP	Frequency dependence	<i>B</i> dependence	Predicted <i>CP</i> signal in δV (K) at $\nu = 10$ GHz
Primordial	Primordial B + Compton scattering [24]	ν^{-3}	В	10 ⁻⁹
Primordial	Lorentz invariance violations [28]	ν^{-3}	Not applicable	10^{-12}
Primordial	Noncommutivity [25,26]	$ u^{-1}$	Not applicable	10^{-12}
Primordial	B + Thomson scattering [23]	ν^{-3}	B^2	10^{-12}
Cosmic neutrino background $(C\nu B)$	Scattering with left-handed neutrinos [27]	ν^{-1}	Not applicable	10 ⁻⁸
Pop III stars	FC [20,31]	ν^{-3}	B^2	$few \times 10^{-6}$ ($\ell \sim 1000, t_{age} = 10^4 \text{ yr}, N_p = 100$) $few \times 10^{-5}$ ($\ell \sim 1000, t_{age} = 10^4 \text{ yr}, N_p = 1000$) $few \times 10^{-7}$ ($\ell \sim 100, t_{age} = 10^4 \text{ yr}, N_p = 100$)
Galaxy clusters Galactic synchrotron	FC Intrinsic emission [21]	$ u^{-3} $ $ u^{(-2-lpha_{\rm sync}/2)} $	$B^2 \\ B^{3/2}$	$\begin{array}{c} (\ell \sim 100, \ell_{\text{age}} \sim 10^{-9} \text{ yr}, \ell_{\text{p}} \sim 100) \\ 10^{-10} \ (\ell \sim 1000 \ [39]) \\ 10^{-8} \ (\ell \sim 100) \\ < 10^{-9} \ (\ell \sim 500) \end{array}$

King&Lubin2016

Galactic synchrotron V model

