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Outline

• Introduction to Low-Temperature Detectors (LTDs)

• Techniques/energy ranges and applications

• LTD applications to ultrafast techniques

• Discussion: where is the overlap and application between UED and LTD?
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What do we mean by “low temperature”?

Room temperature: ~300 K

Liquid nitrogen: ~77 K

Liquid helium: ~4.2 K

Average temperature of universe 

(CMB radiation): ~2.7 K

Our detectors: ~0.1 K



411/6/2023

Why so cold? To overcome energy resolution limits.
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A microcalorimeter measures the 

thermalized energy of individual photons, 

nuclear decays, etc. to create an ultra-high 

resolution energy spectrum

(10-50x better than semiconductors)
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Many applications…

Hitomi (Astro-H) Soft X-

ray Spectrometer

(credit: JAXA/NASA)
CUORE 130Te 0νββ search

(credit: CUORE collab.)

Picosecond tabletop X-ray 

spectroscopy to watch 

chemical reactions

L. Miaja-Avila et al., 

Phys. Rev. X, 2016
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Our focus: nuclear material analysis
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X-ray spectroscopy

Low-temperature detectors are now creating real measurement 

capabilities that would be impossible with conventional detectors
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Different configurations/applications we have developed
Gamma-Ray: 10 – 300 keV

Hot cell deployment,

Pu facility deployment

X-Ray: 0.1 – 20 keV

UHV/vacuum: Electron Microscope, 

Synchrotron Beamlines

Alpha and Fission Fragment:

0.1 – 10 MeV/1 – 200 MeV

Plans for LANSCE integration

SPIDER at LANSCE
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The Hyperspectral X-ray Imaging Project

The chemical form of actinide particles is an important signature for 

nuclear safeguards and forensics

How can you get this information?
Hydrolyzed UF6

• Nanoscale heterogeneity requires a nanoscale probe, which is only achieved in a small instrument with an electron 

beam

➢ Optical spectroscopy (UV/VIS/NIR, Raman, LIBS…) or X-ray excited techniques (µXRF, XPS…) cannot provide nanoscale 
spatial resolution

➢ Synchrotron X-ray absorption (e.g. XAFS) is an excellent probe of speciation with impressive spatial resolution (if you have 
a synchrotron)

• Electrons leaving a sample are easily perturbed. X-rays are less affected by the sample and more widely applicable.

Photons in

Electrons in

Photons out

Electrons out

Our goal: high-resolution X-ray emission spectroscopy with 

nanoscale resolution in an electron microscope
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HXI Instrument

Microsnout with detector array 

and microwave multiplexing

Radiation baffle and snout 

shield support assembly

Dual magnetic shields @ 50 K, 3 K3X IR filters (100 nm Al) 

+ Luxel vacuum window

Rotary + XYZ stage

Cryostat fully decoupled from SEM,

Only mechanical contact through bellows

Linear Slide
BlueFors SD cryogen-free dilution refrigerator
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Studying actinide chemical signatures

Series of pure Uranium reference compounds

Line type corresponds to oxidation state

We focus on “M-gamma” region around 

3.5 keV 
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Particle spectrum: HXI vs. Silicon Drift Detector
Zooming in around 1-2 keV region reveals many rare earth and refractory elements with HXI
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Outside research: ultrafast time-resolved spectroscopy
Uhlig, J., et al. (2013). “Table-top ultrafast X-ray microcalorimeter spectrometry for molecular structure.” Physical Review Letters, 110(13), 138302. 
https://doi.org/10.1103/PhysRevLett.110.138302

Laser water jet x-ray source
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Outside research: ultrafast time-resolved spectroscopy
Uhlig, J., et al. (2013). “Table-top ultrafast X-ray microcalorimeter spectrometry for molecular structure.” Physical Review Letters, 110(13), 138302. 
https://doi.org/10.1103/PhysRevLett.110.138302

Laser water jet x-ray source

Replace “mesh” with sample,

“CCD” with Microcalorimeter detector…

…Ultrafast transmission absorption spectroscopy

This is not time-resolved, but could be coupled 

to pump laser to give time-resolved spectra
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Miaja-Avila, L, et al. (2016). “Ultrafast time-resolved hard X-ray emission spectroscopy on a tabletop” Physical Review X, 6(3), 1–13. 
https://doi.org/10.1103/PhysRevX.6.031047

Iron Emission Spectra, with/without pump

Outside research: ultrafast time-resolved spectroscopy
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Intersection with ultrafast electron source/UED? 

• TES microcalorimeters can be tuned to practically any energy range, from microwave to 

100+ MeV particles

• “Slow” detector: pulses with µs to ms decay times: time resolution comes from source 

timing/coincidence

• But: broadband, high efficiency, single photon counting (like high-purity germanium)

• X-ray emission spectroscopy?

• Electron spectroscopy? 

− We have measured beta decay (100s keV) with TES

• Electron pump/x-ray probe spectroscopy?
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