

CW RF Gun Considerations

John W. Lewellen **Accelerator Operations and Technology**

8 November 2023

LA-UR-23-32494

Acknowledgements

- Fernando Sannibale
- SLAC/MSU/HZDR SRF Gun Team
 - Ting Xu
 - Chris Adolphsen
- John Smedley
- SRF Gun R&D Community

Outline

- Design landscape
- Basic RF gun characteristics
- Why go with a CW-capable gun?
 - Operating considerations and tradeoffs
 - Facility implications
- Recent progress
- Conclusions

Design Landscape – One (arguably unhelpful) View

	Pulsed	~CW	
Normal Conducting	Typically: • > 1 GHz frequency • Multi-cell structures • 2-6+ MeV • 50-100+ MV/m on cathode • O(1 μs) pulses, O(100 Hz) rep rates Exemplar: SLAC/BNL/UCLA 1.6-cell S-band gun	 Single or multi-cell structures 1-2 MeV 5-25 MV/m on cathode 100 Hz) rep rates 25% - CW duty factors 	
Super- Conducting	?		

Quarterwave ("quasi-DC") vs. High-Frequency RF gun design

H	ligh-	Frequency	RF guns
---	-------	-----------	---------

Quarterwave RF guns

Typically multi-cell (cathode cell + at least 1 "full" cell)	Typically single-cell
Most are "on" O(1μs), @10-100 Hz; exceptions include: Euro X-FEL gun (600 μs) LANL 700-MHz gun (CW)	Typically intended for CW operation
Typically 1 – 10 GHz	Typically 100 – 200 MHz
Cathode cell length ~ ¼ RF wavelength	Accelerating gap 0.05 – 0.10 RF wavelength
"Classic" Carlsten / Kim / Rosenzweig / Serafini beam dynamics	Beam dynamics more like DC guns, but with higher on-cathode fields and higher beam energy

Going LFCW – why not?

- Lower gradients more restrictive on charge/time/ε_{th}
- CW operation

Los Alamos

- Implications for shielding
- Waste heat removal for NCRF systems;
- Need for a cryo system for SRF
- Facility / operational considerations
 - NCRF turn on/off needs to be handled carefully; settling times and thermalization
 - SRF keep the gun cold? Let it warm up? Etc.
 - In both cases, particle-free beamlines preferred
 - Shielding needs to account for dark current.

Image courtesy LBNL

Image courtesy SLAC & MSU

Going LFCW – why?

Two regimes with potential advantage over pulsed:

- Measurements need to extend for > \sim 1 μ s (thanks to CW operation);
- Potential for variable pulse spacing < 1 RF period (thanks to DC gun-like dynamics)

Why superconducting?

- Potentially higher fields on the cathode
 - APEX ~ 20 MV/m with standard cathode
 - SLAC/MSU
 - 30 MV/m target
 - 30 MV/m reached in "blank" cavity tests
- Outstanding vacuum

Multiple Beam Pulses

- "Natural" spacing @ the RF frequency
 - Launch the beam at the same phase of the RF field at the cathode
 - Beam parameters same shot-to-shot → downstream optics same
 - Delay between pulses = n / f, where
 - n is an integer, and
 - f is the RF frequency
- A C-band gun (f = 5.712 GHz) can "naturally" make bunches spaced at n*(175 ps), n < 5700*
- A CW VHF gun (f ~ 200 MHz) can "naturally" make bunches spaced at ~5 ns;
 since the gun is CW, n ~ ∞

What if I want a closer (or just different) time spacing?

- Assume some boundary conditions:
 - Beams should be at the same energy
 - Beams should have the same transverse parameters

"generic" 1.6-cell S-band gun 100 MV/m on cathode

SLAC/MSU SRF gun
30 MV/m on cathode

What if I want a closer (or just different) time spacing?

- Assume some boundary conditions:
 - Beams should be at the same energy
 - Beams should have the same transverse parameters

"generic" 1.6-cell S-band gun 100 MV/m on cathode

SLAC/MSU SRF gun
30 MV/m on cathode

Transverse Beam Parameters

Twiss (or Courant-Snyder) parameters for a beam:

 β ~ normalized beam size α ~ normalized divergence angle $\gamma = (1+\alpha^2)/\beta$

Beams with the same Twiss parameters behave in the same way in a focusing system, just scaled by the emittance (e.g. bigger / smaller)

Beams with the same emittance, but different Twiss parameters, behave differently in a focusing system (e.g. waists in different locations)

Area of

ellipse = ε

Transverse Beam Parameters

Twiss (or Courant-Snyder) parameters for a beam:

 β ~ normalized beam size α ~ normalized divergence angle $\gamma = (1+\alpha^2)/\beta$

Beams with the same Twiss parameters behave in the same way in a focusing system, just scaled by the emittance (e.g. bigger / smaller)

Beams with the same emittance, but different Twiss parameters, behave differently in a focusing system (e.g. waists in different locations)

The Mismatch Parameter

$$\zeta \equiv \frac{1}{2}(\beta_1 \gamma_2 - 2\alpha_1 \alpha_2 + \beta_2 \gamma_1)$$

$$\zeta \equiv \frac{1}{2} \left(\beta_1 \frac{1 + \alpha_2^2}{\beta_2} - 2\alpha_1 \alpha_2 + \beta_2 \frac{1 + \alpha_1^2}{\beta_1} \right)$$

Characterizes the relative orientation of the beam ellipses in phase space

 $\zeta = 1 \rightarrow \text{perfectly matched}$

At a waist (α =0), 10% size difference $\rightarrow \zeta$ = 1.08

Calculating Mismatch for a Given Pulse Spacing

For a given beam kinetic energy E_k :

- Find launch phases $\phi_{1,2}$
- Calculate time delay Δt at gun exit
- Find Twiss parameters at gun exit
- Calculate mismatch parameter

For these simulations:

- Only RF; no solenoid, d/s transport;
- No space charge;
- "Short" bunches (~ 1 ps duration)

Mismatch vs. Launch Phase Difference

Mismatch vs. Beam Exit Time

SRF Gun R&D: LCLS-II-HE & FRIB

Ultimate Goals

- Beam source for a new injector for LCLS-II-HE
- Whole injector not currently in scope, but should be "upgrade capable"
- Intended to allow effective operation of LCLS-II-HE to 20+ keV X-rays

Goals of the R&D program

- Build a prototype gun cryomodule (cavity, solenoid, etc.) and cathode insertion system
- Gradient test to 30+ MV/m on the cathode surface
- Hopefully will be extended to include beam generation w/ semiconductor photocathode

SRF Gun Cavity and Cathode Stalk

Overall Project Schedule

SRF Gun R&D: Development Process, Risk Mitigation

SRF Gun R&D: Development Process, Risk Mitigation

In-Process

"Blank" cavity He jacket stackup

Horizontal test @ ANL

Image courtesy M. Kelly, ANL

Cathode stalk DC/RF test stand

Conclusions

- High-gradient, n.5-cell guns are quite mature; specific designs being generated for UED/UEM now
- VHF-type guns are still relatively new and few, NCRF and SRF; but progress very encouraging!
 - VHF-type guns pretty much designed as FEL injectors, so, further tailoring performance is a real possibility.
- CW guns arguably require more infrastructure than pulsed, but in return may offer expanded performance envelopes along several axes.
 - Variable pulse timing seems interesting, but needs further study, e.g. dealing with time-varying downstream elements (energy gain, buncher, etc.)

Backup Slides

Mismatch vs. Exit Time Difference

Twiss parameters vs launch phase

Twiss parameters vs. beam energy

