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(Physics) Model Optimization

Success of Al is through gradient-based
optimization that works for millions,

billions, or even trillions of parameters.
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Abstract

In deep learning, models typically reu
of Experts
coming example. The result is a sparsel
of parameters—but a constant computational cost. Howe
cesses of MoE, widesp
and training instability.
We simplify the MoE routing algorithm and
communication and computational cost

: ls may be trained, for the first

, and we show la
nd

it
precision (bfloat16) formats.

et al., 2019) to obtain up to 7x increases in pre-training spe
resources. These improvements extend into multilingual settings whes

over the n e version across all 101 lang es. nally, we advanc

of language models by pre

Crawled Corpus”, and achieve a 4x speedup over the XXL model.'?
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. the same parameters for all inputs. Mixture

[0E) models defy this and instead select different parameters for cach in-
activated model—with an outrageous number
despite several notable suc-

Our proposed training technique

eter models on the “C

natural language processing, sparsity, large-s

doption has been hindered by complexity, communication c
We address these with the introduction of the Switch |

“To deal with hyper-planes in a 14-dimensional space,

mitigate the

visualize a 3-D space and say ‘‘fourteen” to yourself

very loudly. Everyone does it.”" - Geoffrey Hinton

scale machine
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Gradient-based Optimization

“backpropagation”

Parameters

91‘ = Qt 1 — )\V@L(l 0)

VoLl(x,0)

Input = ERENTIMEAN % Output = ) Objectives
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Differentiable Physics Models

“backpropagation”

Parameters

9t = 9t_1 - )\V@L(.’If, 0)
VoLl(x,0)

IO Physics Sim. [ eI 2 ® Objectives

CEM . GD

simulator evaluation ‘ simulator evaluation

Physical Design

using Differentiable

r Learned Simulators

¥
(DeepMind 2202.00728)
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https://docs.google.com/file/d/10nEPfORyxt_0gx_g7ddaIPhc_urTjmDE/preview
https://arxiv.org/pdf/2202.00728.pdf

Future Neutrino Oscillation Experiments

20—40 kton liquid argon

Sanford Underground
Research Facility

800 miles
< (00 klometer®)

*

UNDERGROUND
PARTICLE DETECTOR

NEUTRINO
PRODUCTION

PARTICLE
DETECTOR

NEUTRINO

Fermilab
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Hyper-Kamiokande

188 kton water
..:: b4 Mt. Ikeno-Yaima
% 1360 m ;
/ﬁ%“ . % water equlv.1 1700 m
se ‘:, - an Neutrino beam i
l
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Unprecedented Statistical Precision

Event rates for different assumptions of true 5,

e DUNE and Hyper-K
aim to collect 1000s
of v_and v_e

appearance events

o Can measure CP
violation (CPV) with
~3% statistical
uncertainty!

e Controlling
systematics
becomes critical!

August 7, 2023
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CP Violation Discovery Potential

e Improved
understanding of
systematic errors is
required for a robust
and timely discovery
of CPV

e Controlling
systematics
becomes critical!

August 7, 2023
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Current Neutrino Oscillation Systematic Error Budget

“T2K 2021 syst.”: Phys. Rev. D 103, 112008
e Breakdown of current (T2K)

% Error for
state-of-the-art understanding CPV search

o  ¢: Beam neutrino flux ¢ + o (ND constrained) 27
o o: Neutrino interaction cross-sections
o ND: Near detector ¢ + o (ND unconstrained) 1.2
o SK(FD): Super-K (far detector) Nucleon removal energy 3.6
o NC: Neutral current SK =& re-interactions 1.6
e Need reduction on all fronts o(ve), olv.) 3.0
NC y + other 1.5
SK detector (FD) 1.5

I T

Need to reduce to <3%
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https://doi.org/10.1103/PhysRevD.103.112008

Novel Beam-Spanning (PRISM) Near Detectors

Intermediate

Water e New NDs aim to mitigate “T2K 2021 syst.”: Phys. Rev. D 103, 112008
Cherenkov most systematic errors o
Detector Yo Error for

e Then detector CPV search
systematics (of ND too)

become especially ¢ + 6 (ND constrained) 2.7
important ¢ + 6 (ND unconstrained) 1.2
previously
“UPRISM” i Nucleon removal energy 3.6
‘— SK = re-interactions 1.6
DUNE-PRISM [ |
1Ar | —
| 5(v,), o(V,) 3.0
AR NC y + other 1.5
DUNE Near * SK detector (FD) 15
Detector

I T

Need to reduce to <3%

iw-~
=11 >} beam

center
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https://doi.org/10.1103/PhysRevD.103.112008

T2K-SK Water Cherenkov Detector Systematics

Control Samples for Energy Scale
PTEP 2019, 053F01

o D —
% Stop-u (multi-GeV)
5 1 - Stop=p (SUb=GeV) A kg
ol RN - - E——— s _
5 1 4 ¢ + o (ND constrained)
P | RN S —————————
< & ¢ + o (ND unconstrained)
. ~—.—<_]
il Lol L Lol L L
10 102 3 Nucleon removal energy
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10 Momentum [MeV]
SK & re-interactions

Aiming for 0.5% in Hyper-K _
o(v,), o(v))

NC y + other
Systematic errors in event

discrepancies in cosmic ray
and atmospheric v data

selection and energy scale / SK detector (FD)
o -P
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“T2K 2021 syst.”: Phys. Rev. D 103, 112008

% Error for
CPV search

2.7
1.2
3.6
1.6
3.0
1.5

Need to reduce to <3%


https://arxiv.org/abs/1901.03230
https://doi.org/10.1103/PhysRevD.103.112008

Traditional Paradigm of Detector Physics Modeling

bR e Limitations
Geometry | “f==4-% ¢ = R “ » .. .
o Lack of “end-to-end” optimization
Cherenkov physics e 51 18 ..
i o Some models are not even optimizable (e.g. look-up tables)

Water properties (light
scattering, absorption)

o Same physics, two separate software (i.e. simulation & calibration)

PMT and wall reflectivity

e Goals toward “detector systematics @ <1% level”
o Automation + fast compute that can scale for HK/DUNE

Residual magnetic fields

a2 i
PMT+electronics response ; wqﬁﬂ%::’::fm% A .. ) ... )
e EEEEEETE ] o Accurate model optimized directly to minimize data/MC disagreement

Detector Simulation :>‘ Reconstruction ’|:> )
. B Ag — ,‘
F1CARUS = T4k (dE/dn) )@ ; ﬁ
Q = Qo exp(—varigt/T) I:> De.:tector
physics model
ot (1) = o7 (0) + (2ZL) t parameters
. i . _ \ .. ) < ﬁ . w o
Simulation Input Detector Output ‘ Calibrati ’ Reconstructed
(true dE/dX) (ADC) anbration | (Calibrated dE/dX)
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Automation of Physics Model Tuning

Research Proposal: differentiable detector physics simulator (DDSim)

o “End-to-end”: gradient-based optimization using control (calibration) dataset
o Interpretable: analytical physics models for well understood physics
o Flexible: neural representation to incorporate complex features in real data

o Fast: utilization of modern computing accelerators (e.g. GPUs)

( )

Detector Simulation
Key Elements:

1. Differentiability

2. Neural network (NN)

Simulation Input ~ Detector Output
(true dE/dX) (ADC)

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments



Water f{E{[til]

e LAr “Visibility Map” (or light - cherenkov ERG
scattering table for WC)
derived from massive photon
MC, encoded in a
multi-dimensional table ... but

static & not scalable AL s — ~~ /
Probability of detecting photon produced at given position

(2D slice of 3D voxelized volume)

e Candidate: “SIREN”
o Implicitly represents a
continuous function in space
o Designed to learn the gradient
surface = enables applications
using gradient-based
optimization

Y [cm]

Anaisip

Y [cm]
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https://arxiv.org/abs/2211.01505

Detector Inverse Solver (DIS) using a differentiable simulator
A novel application enabled with a DDSim

G (XY, 6c)

Inverse Image Solver (DIS)

S

Liny = |G(Y) = X[

and / or

Ecc = |F(G(Y)) B Yv|2

R C D — Y < Do
Input domain of Output domain of

detector simulator F (Y| X, OFr) detector simulator
(inaccessible)  Differentiable Detector Simulator (DDSim)  (e.g. real data)

Enables near-far comparison of neutrino events at the event-by-event level for the first time
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The Water Cherenkov Test Experiment (WCTE)

e Prototype for IWCD at CERN in 2024
e Well-understood p, e, *, u* particle beam from 140-1200 MeV/c

o Control samples to constrain neutrino experiment modeling:

m Detector response: Cherenkov light emission; n* interactions

m Neutrino flux & interactions: lepton scattering and hadron production s
o Immediate impact to existing experiments (T2K, Super-K)

3.

e Demonstration of these new ML simulation and calibration
techniques for WC, and optimization towards Hyper-K/IWCD

Water Cherenkov
Aerogel Detector

. Threshold
Wire Chambers Shielding

TOF TO \ /
Permanent

Seogzren
Ongya==see.
Magnet (0.1 TM) da,)’Beé;;;b‘y..,_
rectjor
n

Target

e,1,Tp

3-4m

| N —

~102 mPMT modules
x19, 3" PMTs each
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ArgonCube 2x2

e Prototype for ND-LAr (LArTPC component of DUNE Near Detector) at Fermilab
o  2x2 array of 0.7x0.7x1.2 m® modules deployed in NuMI beam with elements of MINERVA

o Installation and operation in NuMI anticipated in summer 2023

e NuMI provides an intense
source of neutrinos & muons

® Demonstration of these new ML

simulation and calibration
techniques for LArTPCs, and
optimization towards DUNE

o  Al/ML reconstruction already

under development ~ e o Y . i
o SIREN optical model developed 1st module testing at Bern  Module at Fermilab

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments

Field uniformity
study at SLAC

e ~ Xreco [MM] @ Positive x face

-300 -200 -100 O 100 200 300
z [mm]




Research Schedule

Tasks to be fleshed out and assigned

Move to December @ SLAC?

112 /3 4 5 6 |7 8 9 1011 /12

2024

2025
112 345617 (89 10/11/12

2026 |
12 3

N\
l 2023 L ]
45 6 (7 (8 [9 hol11]12
US-Japan In-person Workshops [TT IR [
WCTE Data Taking
ArgonCube 2x2 Data Taking
Obj. A.1: Extend SIREN
Implement signal timing T i i |

Implement photon direction
Obj. A.2: DDSim data-driven optimization
Ob;j. A.3: Integrate DDSim into DIS
Into existing tools
Into emerging tools
Obj. B.1: Demonstrate DDSim optimization
Train and test on ArgonCube
Train and test on WCTE
Obj. B.2: Demonstrate DIS application
Test with existing tools
Test with emerging tools
Obj. B.3: FAIR dataset

L[]

IIIFI IIIII|

_HEEEN

HEEE

H_BEEEN |

IIIIIII’II
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In-person Workshop at SLAC

e Japan-side budget allows e.g. 4 people travel for 2 weeks, this fiscal year (FY)
o Project will be reviewed then budget decided for the following 2 FYs

e Hack-a-thon-like format with code sprints
o Tasks to be defined as we ramp up these coming months

e Candidate dates to be decided this meeting, then poll will follow
Sep. 25 - Oct. 6 (too soon?)

Not Oct. 9 - 13 (JPS-APS Hawaii)

Not Oct. 23 - 27 (HK CM)

Not Nov. 6 - 10 (T2K CM)

Not Nov. 27 - Dec. 1 (SK CM)

Dec. 4 - 157

Early next year?

o O O O O O O
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Collaboration Name?

e Urgentin case we want to include in mailing list name, GitHub name, etc.

e Anyideas?
o Differentiable Signal Propagation Project (DSPP)

(@]

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments



Meeting Agenda

MonbAy, 7 AucusT

LK Ul — 20:00 Day 1: https:/ipmu.zoom.us/j/94250009765

Project overview: Differentiable physics modeling
Speakers: Kazuhiro Terao , Patrick de Perio

TuesbAy, 8 AucusT

L& Ul — 19:00 Day 2: https:/ipmu.zoom.us/j/97884442440

LArTPC: differentiable neural implicit representation for physics modeling m Alternative methods for signal propagation

Brainstorming Session
Speakers: Kazuhiro Terao , Patrick de Perio

Speaker: Patrick Tsang

2023-08-07 SIREN U...

Water Cherenkov applications/challenges
Speaker: Ka Ming Tsui

Machine Learning for Neutrino Oscillation Experim



e Next generation long-baseline neutrino oscillation experiments will require
unprecedented precision understanding of their detectors

e Existing simulation, calibration, and reconstruction analysis pipelines are becoming
a limiting factor in this endeavor

e Proposed novel machine learning algorithms to solve these modeling and

computational issues
o Common tools to be shared between US-Japan
o Seed for community-wide effort

° (feel free to contribute):
https://docs.google.com/document/d/1aw6Yv7exMGs7tk4SyKdBMQg-r3j7zVS58mY
JjLiUT3hw/edit?usp=sharing

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments


https://docs.google.com/document/d/1aw6Yv7exMGs7tk4SyKdBMq-r3j7zVS58mYJjLiUT3hw/edit?usp=sharing

References

e Project Abstract
e Project Proposal
e Project Plan (for KEK)
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https://triumfoffice365-my.sharepoint.com/:b:/g/personal/pdeperio_triumf_ca/EUHbbjP_j61IgtSkp5uuyWUBSbpRmh4dUu7_V9Uf9j7vhg?e=ET60m4
https://triumfoffice365-my.sharepoint.com/:b:/g/personal/pdeperio_triumf_ca/Ebc6teuimlZKpwRhiHj5sUcBZZofjfBQtgjyNFIzRbnPvQ?e=WJGQjp
https://triumfoffice365-my.sharepoint.com/:b:/g/personal/pdeperio_triumf_ca/Ee4KeL7faRpNsxOlBPFvvwIBBSOQm4AYMffjwY7_TH2_JQ?e=z2JeFk
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How: Differentiable Detector Physics Simulator (DDSim)

Gradient-based optimization

; ann LeCun
&y January 5,2018

, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

gradient
Input Output Opt;rllalz;tlon
X F (x|0) 3

parameters

0

L(F(x|0),y)

Qact gradiery

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments 24



Neural differentiable surrogate for optical detectors

Differentiable Neural Scene Representation

NeRF: breakthrough on
high resolution image
representation by a very
simple neural network

August 7, 2023

Ground Truth ReLU SIREN

SIREN: success of learning the
1st and 2nd order derivatives

Ground Truth Optimized Blocks
..IIII-_IIIII
| Lad Bl | |

N

g
v

ACORN: scalable version of SIREN
by adding spatial feature compression
(essentially a learnable kd-tree)

... only a few examples

Machine Learning for Neutrino Oscillation Experiments


https://www.matthewtancik.com/nerf
https://vsitzmann.github.io/siren/
https://www.computationalimaging.org/publications/acorn/

AD-Enabled Detector Physics Simulator

e Enable Automatic Differentiation (AD):

o Same physics formula, now differentiable

o Backed-up by a large Al/ML research community
o Speed up by enabling co-processors (GPUs/TPUs)

2

e Successful demonstration for LArTPC imaging detector

Vs

=%ICARL'S =

Detector Simulation
Ap

1+ kg (dE/dx)]&

Q = Qo exp(—varigct/T)

2D

(r) (v 2(0) + t

Vi

o End-to-end: simultaneous optimization of multiple detector physics parameters
o On-going study: the robustness of the fits, modeling of poorly understood physics (e.g. electric field)

g
N
L

"
o
"

©
©

LR 5E-3

Transverse diffusion: ¢,(0)
o
(=}

e
rS

2000 3000
training iterations

0 1000
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4000

Longitudinal diffusion: D,

©
1

~
1

(=2}
L

w
L

IS
1

w
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LR 5E-3
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2000 3000
training iterations

4000

Electron Lifetime: ¢
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Data Reconstruction in Experimental Particle Physics
Cross-domain HEP Al ecosystem

4 I
ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution.
It’s naturally reusable across domains including software tools
supported by a large community of researchers.

HEP Ecosystem for Al research

e Accessible education and training at all levels

e Reusable software tools to unlock modern compute
accelerators and networking (distributed ML)

e Public datasets with documentation and performance
metrics for transparent, reproducible science

e Artificial Intelligence and Technology Office (AITO)
o Federated, equitable, responsible, trustworthy Al
o Al is an accelerator. It is coming. Don’t avoid.

Participate to make sure the use is good. 27

Education and
training

Open source
and public
data

Distributed



https://www.energy.gov/sites/default/files/2021-09/AITO%20Program%20Plan%2009-16-2021.pdf

Evolution of the Universe

The region that nucleon decay and neutrino experiments can explore
10'°GeV 10°GeV 1MeV 1keV 0.3eV
Baryonnumber  Remaining i O ) - % A
production Dark Matter

Mixing of neutrino

The Grand Sl
: mass / the origin of
e Theoiy CP violation .

o , @ ©

3 ‘IIIIIIIIIIIIllIIIlIlIIIIIIIII-IIIll!llllI'l.
Inflation H r
H ‘
- E: B
L
. % The end of
X ‘b the Universed! 'E
H
L
7 A

\4

Supersymmetry
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el
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Synthesis o Hum an

Energy emission
heavy elements
biirst belngs
.

from fixed stars
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® om supel

e
10 T se Q v 9 ) i D
Synthesis of light elements "
o T E— & = :
1071 - ,
100 sec 380,000 1 billion Ageof _  13.8billion —

years years the Universe years 10 ¥ years

H. Maruyama

Cherenkov light

Positron 1
Proton

Proton Decay — GUTs Matter - Antimatter Asymmetry Multi-messenger astronomy
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SIREN as a DDSim for Optical Detectors

e Example: “Visibility Map” (or light scattering table for WC) derived from massive
photon simulations, encoded in a multi-dimensional table
e Issues: “static’ and not scalable

Probability of detecting photon produced at given position
(2D slice of 3D voxelized volume) arXiv:2211.01505

e SIREN is an implici
representation of a
continuous function

in space
o Canbe seenas a
trade-off between
an analytical
function and
a table

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments


https://arxiv.org/abs/2211.01505

SIREN as a DDSim for Optical Detectors

e SIREN is designed to represent (learn) the gradient surface hence “differentiable”
e Can be optimized directly by minimizing “a data/MC discrepancy” with control

samples
Derivative of previous slide
(2D slice of 3D voxelized volume) arXiv:2211.01505
e SIREN is an implicit - Fy
: e Q90 L0 €90 L0 L0 L9 L0 Qo
representation of a 6650 €65 €5 65 €5 €5 o5 o5 o
continuous function - ‘-ncDﬂﬂﬁnﬂﬂﬁﬁﬂﬂgoﬁbﬂgﬁﬂeaﬂbquﬂﬂqaﬁﬁﬂ ﬂﬂl

& S8 €8 W9 €9 €8 w9 w9 w9

in space
o Canbe seenas a
trade-off between

e €9 €0 ©o

S8 &5 oo eb ) _
- M 6 ep ©bo 6B oo 66 66 e6 05 o
an analytical N ¢o ¢6 oo co €0 ©0 oo oo
function and S 0 65 65 ©6 ©b €6 65 eo 65 o
2 table M &0 90 ©P €5 @0 €0 60 6o eo

=200

50

0
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https://arxiv.org/abs/2211.01505

SIREN as a DDSim for Optical Detectors

600
400

200

y [mm]

-200

-400

-600

(1Tl T p——

rd

P

”

d

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-200

0
z[mm)]

200

events 2021 04 05 12 56 22 CEST.gz.h5:30151

7004

600 4

5004

400

3004

Light Signal [p.e.]

200

=== Pred. (uncalib.)
Pred. (calib.)
¢ Data

3

August 7, 2023

600

400

200

y [mm]

-200

-400

-600

events_2021_04_05_12_56_22_CEST:1110

-200 200 200 0

z [mm]

0 200
X [mm]

events 2021 04 05 12 56 22 CEST:1110

© === Pred. (uncalib.)
i Pred. (calib.)
$e ¢ Data

y [mm]

ght Signal [p.e.]

600

400

200

-200

-400

-600

Preliminary demonstration on real DUNE ND prototype data strongly promising
Optimized as a simulator + applied in reconstruction (inverse solver)
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ML for Detector Physics Modeling

SIREN as a differentiable surrogate for optical detectors

Differentiable Neural Scene Representation

SIREN trained on “Toy + Noise”
successfully learned the underlying
analytical function shape (simulation)

SIREN for LArTPC detectors

e Designed as an implicit representation
of a continuous function in space Relative Bias =
(suited to “visibility”, “E-field”, etc.)
o Can be seen as a trade-off between

an analytical function and a table

—— Stat. Ermr.

SIREN provide
- = Toy

improvement ,
. . = Toy+Noise
on simulation .
| Toy+Noise
already! (Ref: Toy)

X
n
L
28]
[0
o

e “Differentiable” implies we can directly
optimize against “data v.s. simulation
discrepancy” given control samples %

logio(vis)




The NuPRISM Concept

Neutrino energy spectrum depends on off-axis

angle to the neutrino beam source

Moving IWCD vertically — varying off-axis angle
— measurements with differing energy spectra

Linear combinations of measurements at
off-axis angles can mimic a monochromatic

beam, or the far-detector spectrum

Arb. Norm.

15

20F T I L R IR -

— Linear Combination
—— 1.7° Off-axis Flux

—— Gaussian: Mean=0.9, RMS=0.11 GeV -
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Linear Combination, 0.9 GeV Mean

Events/50 MeV

5
E]

2000

2
\8\

—
—— 1Ring p Event Spectrum ~ _|
Absolute Flux Error
Shape Flux Error

Statistical Error
—— NEUT QE
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The Need for a New Near Detector

Imperfect extrapolation of T2K: Phys. Rev. D 103, 112008 (2021)

neutrino flux & cross-section % Error for
from near detector to Super-K

CPV search
tnode bearn i T ¢ + o (ND constrained) 2.7
ND280 e e ,
= SK Osc. (x10°) . Goag ™ GC5FP ¢ *+ o (ND unconstrained) 1.2
g | i .§ Nucleon removal energy 3.6
8 —

B i . .
T = SK & re-interactions 1.6
% ’ L ij\ - 3.0
N& 4l 05 & G(Ve), G(Ve) .
2 T NC y + other 1.5
S 20 =
Y I 2 SK detector 1.5
& % 0.5 1 1.5 20 &

)‘:* Eu (G(\\] ) \b'/ Tota I

Differing energy spectra between
near and far detectors

Need to reduce to <3% for Hyper-K
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The Need for a New Near Detector

~ Detected
¥ \/@/ charged lepton T2K: Phys. Rev. D 103, 112008 (2021)
W+
Nuclear .
Physics Final state % Error for
p, T, N, ...
T CPV search

Uncorrelated processes ¢ + o (ND constrained) 27
between near detector and
Super-K \ ¢ + o (ND unconstrained) 1.2
(Non-QE scattering, pion production,
multi-nucleon knockout, etc.) NUCleon removal energy 3 6
g T SK & re-interactions 1.6
% F 0MeV < E, <300 MeV
By S i s(v), o(v) 30
F [7777] 7100 MeV < E, <900 MeV 4 e/’ € )
:| 900 MeV < E, <1100 MeV :
T NC y + other 1.5
0.5f , ] SK detector 1.5
W LT Total
0.5 1 15 2 25

Erec (Gev)

Large energy reconstruction errors

Need to reduce to <3% for Hyper-K
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The Need for a New Near Detector

T2K: Phys. Rev. Lett. 113, 241803 (2014) T2K: Phys. Rev. D 103, 112008 (2021)
S oo T T T o
% 80:—. K %) v. CC interactions /0 Error for
g eof N1 backgroend 2 CPV search
= = W background ]
.§ 40; E= Other background E i
B 20508 2 ; ¢ + o (ND constrained) 2.7
Reconstructed p. (GeV/c) ¢ + o (ND unconstrained) 1.2
Nucleon removal energy 3.6
Difficult v_(v_) measurement at SK n re-interactions 1.6
near detector (mostly v (v ) e —
Bt
beam and y backgrounds) G(Ve)’ G(Ve) 3.0
NC y + other 1.5
SK detector 1.5

Need to reduce to <3% for Hyper-K
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https://doi.org/10.1103/PhysRevLett.113.241803

IWCD Measurement of v_ (v)

o(v.)lo(v,)
o(v,)/o(v,)

Constrain using 1% v, (v_c) contamination in beam

=

v background mostly mitigated by water Cherenkov active shielding

v, candidates in 7%2%

10 years v, CC
v, CC
I NC Other
Bl NC n°
B NC Gamma
B Gamma
B v, Other
Il v.CCOn

2500

N\II[

2000

Number of Events

1500

1000

500

o\l![{[{\[‘\\\l|[{[{‘

T

111l | o |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
True v Energy (MeV)

(=]
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The Need for a New Near Detector

T2K: Phys. Rev. D 103, 112008 (2021)

Ve Ve % Error for
\\/ CPV search

| ¢ + o (ND constrained) 2.7

EZ K ¢ + o (ND unconstrained) 1.2

Nucleon removal energy 3.6

N N SK = re-interactions 1.6

a(v,), o(v,) 3.0

NC y + other 1.5

Neutral current /
backgrounds lacking SK detector -
data driven constraints Total w

Need to reduce to <3% for Hyper-K
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e I y Classification in IWCD

e efficiency when rejecting 99.9% of u

e Constrain

100

5 | Fooelet e

g 8o [fiY T

C

K

kS,

T 60 _

a) Truth Quality Cuts:
o

S 40 ____ Tracks ~fully

2 contained

c /

£ 201 N && Distance from

= r -

@ wall > 50 cm

L

0% 200 400 600 800 1000

True momentum

o(v,)/lo
0’('\72)/0'(\7“)
e Need >~1000 in p rejection (>99.9%)

(v)

e Can be achieved in IWCD with ML

Factor 10° speedup

fiTQun log-likelihood difference

e

—-1500 —1000 -50 0 500 1000 1500
10° :
----muons
------- electrons |
10° ot B

Arbitrary scale
[}
o
£~y

103

; .

0.0

02 0.4 0.6 0.8 1.0
ResNet softmax discriminator

using 1% intrinsic v_(v) in beam

-8

=
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Gamma (y) Identification

e Need data driven constraints on y backgrounds

e/p
€ o—>
e efficiency when rejecting 80% of y \/
ResNet : v

Ul
(@)
>LL%:
.<
('D+

I
o

e yand e almost indistinguishable in water

Electron signal PID efficiency [%]
w
o

fiTQun Cherenkov detectors
o Potential discrimination shown for the first time
2 0 Selected 1-ring e-like events
e ML shows promise | 'WePvBeamMC

10 with at least
statistical separation ;-

0% 200 400 600 800 1000
True momentum 5

" ResNet Output: P(y)
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 Detector Modeling Uncertainties

* The fundamental v—Ar interaction is the same in the ND and FD,
so some detector error cancelation is possible

- lonization, recombination, drift velocity may be similar provided that the

detector conditions are similar (e.g. E-field, Ar purity, etc.) E! .= Eypec X (po +P1V Erec + 11;2 )

* However, there are several important differences
: . . Particle type Allowed variation
- ND pixel readout vs FD wire or strip readout

- Large pileup at ND (10’s of events per spill) o P P2

- Geometry: ND has smaller active volume, dead regions within the all (except muons) 2% 1% 2%
active volume, shorter drifts (less diffusion)

u (range) 2% 2% 2%
- Different calibration strategies (e.g. ND has plentiful muons; FD has % 1% 1%
~5,000/day and will rely more on calibration systems) p (enzvature) ° ° °
=
- Currently, a conservative assumption of uncorrelated ND/FD P W A S
energy response uncertainties for each particle type is assumed e, 7, m° 2.5% 2.5% 2.5%
- Estimated from calorimetric approaches (Minerva + NOvA) and LAr- n 20%  30%  30%
TPCs (LArIAT, MicroBooNE, ArgoNeuT)
- Other uncertainties include fiducial volume size and energy
resolution(s), and selection uncertainties on the muon
identification and hadronic energy containment Eur. Phys. J. C 80, 978 (2020)

7 2022/09/28 Mike Wilking | Systematic Errors in DUNE ‘\\\V Stony Brook University | 5_y(\V =



Constrained Modeling of the Experiment

e A coherent method exists for constraining (degenerate) fundamental physics
parameters of the neutrino flux and interactions with measurements
e This still needs to be developed for detector physics parameters

v Flux v Interactions Detector Modeling
# Cherenkov
o P ~ ; %o Geometry g " emission .
N E - ” ° . < N .
N - ‘. T
= O " * e Water e
—_— [ ] “ n temperature, P :
,93 0 Tree :, ; transparency, CE calfbraiion -
O O Beam Nucl I [ ot | d scatteri oL A
2 O " o s g0
o . . [3A
@ — g
- O lorns PMT and wall \ h <
D{i} < reflectivity X Y,
-~ ’ X
e T‘Z - \-ljh:, S Angular
Residual = SR esponse
magnetic _- == £ SPE gain,
field QE, dark noise...
u

Barrel ECal

P@D ECal

Design and Build
Measurements
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IWCD & Hyper-K Photosensor Development

e Multi-PMT (mPMT):
19 x 3” diameter
PMTs in a water-
tight vessel with
HV and electronics

e Pulsed and
continuous LEDs

for calibration:
o PMT timing
o  Water properties
o Detector geometry

e Sensors for
magnetic field
monitoring

August 7, 2023

Continuous LED . .
Stainless steel ring

\*

PVC vesse
Reflector

Stainless backplate-—;. Pulsed LED

PMT

Acrylic Dome—__ & '

Optical get——== 4

N

PMT support matri T ap

Scintillator plate L et il PMT base
4] A »
—— 7%&_ Water-tight
~— feedthrough

Magnetometer B
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Overview: Next Generation Experiment

Hyper-Kamiokande

water equnv.i 1700 m

Q

Neutrino beam

V.. .

295 km

e Bigger and more sensitive than ever
o Fiducial mass 8x Super-K
o J-PARC beam 2.5x more powerful
—  Neutrino rates 20x T2K

e Precise systematic understanding becomes
critical to the % level
o New near detectors and photon detectors

o New calibration and event reconstruction techniques
o New supporting external data from auxiliary experiments
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T2K-SK Multi-Ring Datasets for Future Analyses

e Second dominant interaction
channel:
e Expected to improve oscillation

parameter measurements
o E.g.~12% increase in v_signal statistics

e New BDT pushing the limits of traditional
likelihood reconstruction algorithm

\V‘:

+
v CC1ln
0 8] e 2] F
) s g T2K work in P E T2K work in Progress
91— POT = 1.00x10%, 1dcye sample 35 5 2 IJ’R“\“ I« 1‘ ' % Qv | T2K work in (1.00x10* POT)
F {771 Other il & POT = 1.00x10%', 2dcye sample (. F 3 other 2 rogress 2Ry OCI*
8- - - o e S 4| PrOET
F w1 30, {77 Other S [ EE 5
e b A N S N — T 8
| ' 1e + other s E‘"o E1sFm g
Py e . 25 N g F B3 1evon 3
5 I 1+ other g f 1e + other [ te
; sb o+ z 20’ [ R [ e
Z ] /1{1” dia = M 1w + other 1=
£ —— All no oscillation 2 + K
4 2 I B+t 20
5 —- All with oscillation g 15 P ﬁ [ T2K work 0
i S i . z r —— Al no oscillation L
I'2K work in progress F 1N pr
Lk 10 —— Al with oscillation pal. A0 EROEGRESS
T2K work in progress C
[ N 0 5 [ E—— [
i) 0 1 2 3 4 5 6 7 8 9 10 -04 -0.2 0 0.2 0 0.5 | 1.5 2
EJ (GeV) EI (GeV) BDT response Rec. v energy [GeV]
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Multi-Ring Reconstruction in the Further Future

e More machine learning: panoptic segmentation
e Towards improving multi-ring & multi-GeV event

classification and reconstruction
o v mass ordering, v_appearance, J_,

(a) image (b) semantic segmentation

Observed charge Labels
First attempt on
n’ decay events
in IWCD:
~80% accuracy
e 1 > U-Net FRRN
H 0.6
8
N 05 055
8 043
g
“03 2
<
0.2
-0.5
h 0.1
R 0

L 1 5 10 10? 5

Y Y
% o G
“Sub-GeV ‘Multi-GevF""™
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Differentiable Physics Models

Modelin —
Detect Phgsi . Example: Liquid Argon TPC
ctector Thysic Objective: given a calibration dataset
' | (i.e. images of particle trajectories
* with approximated dE/dX values),
Y" “fit” the detector physics parameters
; &
.O s
%*'%'tTo ) £ e
%“ommtoo'b“m‘n"“‘u“r‘nunmmmmmha%o%%v '
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Differentiable Physics Models

Modelin o
5 : Example: Liquid Argon TPC
Detector Physics .
. : e (Charged particle ionize electrons
e .‘ W e Electrons drifts under E-field
e Signal diffuse and attenuated
- Detector Simulation
S
M Y Y 5 9 _. Am
OV v ¢ QV v ® .V v @ % Hcars = 1 +kp-(dE/dx)/&
¢ e . = Q = Qo exp(—varitt/T)
S o-,z(t) o 0‘,2(0) + 2D7L t
Va
L 2 Sy N\:._ X
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Differentiable Physics Models

2000 3000 4000
training iterations

1000

Optimizing the “lifetime”
physics parameter directly
from calibration dataset

Example: Liquid Argon TPC
e (Charged particle ionize electrons
e Electrons drifts under E-field
e Signal diffuse and attenuated

Detector Simulation

% N . —
1CARUS = 1 L kg - (dEJdx) ] &

Q = Qo exp(—variget/T)

5 2D
o2(t) =~ o2 (0) + | =E |1
\’;1
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Differentiable Physics Models

Work credit due (from left):
ML/Math: Youssef N., Sean G., Daniel R.
1000 2000 3000 w0 2000 3000 neutrino: Yifan C., Roberto S.
training lterations training Rerations
Ap
1+kg-(dE/dx)/& Lots of applications

HICARUS =

ST el e Simultaneous multi-parameter fit

e Inter-parameter dependency study

Kb/eField
e Automation of calibration workflow

Degeneracy e Inverse imaging (i.e. reconstruction)

0.78

August 7, 2023 Machine Learning for Neutrino Oscillation Experiments 50



The Core Idea:
Differentiable Physics Modeling
And Applications in DUNE/HK

.Augustu7, 20.25
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