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(Physics) Model Optimization

“To deal with hyper-planes in a 14-dimensional space, 
visualize a 3-D space and say “fourteen” to yourself 
very loudly. Everyone does it.” - Geoffrey Hinton

Success of AI is through gradient-based 
optimization that works for millions, 
billions, or even trillions of parameters.
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Gradient-based Optimization

Neural Net. Evaluation

Parameters

Input Output Objectives

“backpropagation”
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Differentiable Physics Models

Physics Sim. Evaluation

Parameters

Input Output Objectives

“backpropagation”

Program
Physical Design 

using Differentiable 
Learned Simulators

(DeepMind 2202.00728)
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https://docs.google.com/file/d/10nEPfORyxt_0gx_g7ddaIPhc_urTjmDE/preview
https://arxiv.org/pdf/2202.00728.pdf


Future Neutrino Oscillation Experiments
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20→40 kton liquid argon

Hyper-Kamiokande

188 kton water

Near Detectors J-PARC



Unprecedented Statistical Precision
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● DUNE and Hyper-K 
aim to collect 1000s 
of νe and ν̅e 
appearance events 
○ Can measure CP 

violation (CPV) with 
~3% statistical 
uncertainty!

● Controlling 
systematics 
becomes critical!

Event rates for different assumptions of true δCP

CPV parameter

Hyper-K



CP Violation Discovery Potential
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● Improved 
understanding of 
systematic errors is 
required for a robust 
and timely discovery 
of CPV

● Controlling 
systematics 
becomes critical!

Hyper-K



Current Neutrino Oscillation Systematic Error Budget
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Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector (FD) 1.5

Total 6.0

“T2K 2021 syst.”: Phys. Rev. D 103, 112008

Need to reduce to <3%

● Breakdown of current (T2K) 
state-of-the-art understanding

○ φ: Beam neutrino flux
○ σ: Neutrino interaction cross-sections
○ ND: Near detector
○ SK (FD): Super-K (far detector)
○ NC: Neutral current

● Need reduction on all fronts

https://doi.org/10.1103/PhysRevD.103.112008


Novel Beam-Spanning (PRISM) Near Detectors
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Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector (FD) 1.5

Total 6.0

“T2K 2021 syst.”: Phys. Rev. D 103, 112008

Need to reduce to <3%

Intermediate
Water 
Cherenkov
Detector

previously 
“nuPRISM”

DUNE Near 
Detector

● New NDs aim to mitigate 
most systematic errors

● Then detector 
systematics (of ND too) 
become especially  
important

https://doi.org/10.1103/PhysRevD.103.112008


T2K-SK Water Cherenkov Detector Systematics
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Systematic errors in event 
selection and energy scale 
assigned from data/MC 
discrepancies in cosmic ray 
and atmospheric ν data

±1
.9

%

Stop-μ (multi-GeV)
Stop-μ (sub-GeV)

π0

Decay-e(M
C

-D
at

a)
/D
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a 

(%
) PTEP 2019, 053F01

Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector (FD) 1.5

Total 6.0

“T2K 2021 syst.”: Phys. Rev. D 103, 112008

Need to reduce to <3%

Aiming for 0.5% in Hyper-K

Control Samples for Energy Scale

https://arxiv.org/abs/1901.03230
https://doi.org/10.1103/PhysRevD.103.112008


Traditional Paradigm of Detector Physics Modeling 
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Detector Output
(ADC)

Simulation Input
(true dE/dX) Calibration

Reconstructed
(Calibrated dE/dX)

Reconstruction

Detector 
physics model 

parameters

… 

Detector Simulation

● Limitations
○ Lack of “end-to-end” optimization

○ Some models are not even optimizable (e.g. look-up tables)

○ Same physics, two separate software (i.e. simulation & calibration)

● Goals toward “detector systematics @ <1% level”
○ Automation + fast compute that can scale for HK/DUNE

○ Accurate model optimized directly to minimize data/MC disagreement

Calibration
Source

Geometry

Cherenkov physics

Water properties (light 
scattering, absorption)

PMT and wall reflectivity

Residual magnetic fields

PMT+electronics response



Automation of Physics Model Tuning
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Detector Output
(ADC)

Simulation Input
(true dE/dX)

Reconstruction

Calibration
Reconstructed

(Calibrated dE/dX)

Detector 
physics model 

parameters

  Key Elements:

1. Differentiability

2. Neural network (NN)

Detector Simulation

Research Proposal: differentiable detector physics simulator (DDSim)

○ “End-to-end”: gradient-based optimization using control (calibration) dataset

○ Interpretable: analytical physics models for well understood physics

○ Flexible: neural representation to incorporate complex features in real data

○ Fast: utilization of modern computing accelerators (e.g. GPUs)



● LAr “Visibility Map” (or light 
scattering table for WC) 
derived from massive photon 
MC, encoded in a 
multi-dimensional table … but 
static & not scalable

● Candidate: “SIREN”
○ Implicitly represents a 

continuous function in space 
○ Designed to learn the gradient 

surface = enables applications 
using gradient-based 
optimization

SIREN as a DDSim for Optical Detectors
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arXiv:2211.01505

Visibility

Simulated Table

SIREN

Water
Cherenkov

Liquid
Argon

PMT

Scintillation light

Photon
Production
point

PMT

Cherenkov light

Probability of detecting photon produced at given position
(2D slice of 3D voxelized volume)

ICARUS

https://arxiv.org/abs/2211.01505


Detector Inverse Solver (DIS) using a differentiable simulator
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G (X|Y, 𝜃G)
Inverse Image Solver (DIS)

Input domain of  
detector simulator

(inaccessible)

Output domain of  
detector simulator

(e.g. real data)

A novel application enabled with a DDSim

F (Y|X, 𝜃F)
Differentiable Detector Simulator (DDSim)

and / or

Enables near-far comparison of neutrino events at the event-by-event level for the first time



● Prototype for IWCD at CERN in 2024

● Well-understood p, e, π±, μ± particle beam from 140-1200 MeV/c
○ Control samples to constrain neutrino experiment modeling:

■ Detector response: Cherenkov light emission; π± interactions
■ Neutrino flux & interactions: lepton scattering and hadron production

○ Immediate impact to existing experiments (T2K, Super-K)

● Demonstration of these new ML simulation and calibration 
techniques for WC, and optimization towards Hyper-K/IWCD

The Water Cherenkov Test Experiment (WCTE)
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3.
6 

m

3.8 m

~102 mPMT modules 
x19, 3” PMTs each 



ArgonCube 2x2
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● Prototype for ND-LAr (LArTPC component of DUNE Near Detector) at Fermilab
○ 2x2 array of 0.7x0.7x1.2 m3 modules deployed in NuMI beam with elements of MINERvA
○ Installation and operation in NuMI anticipated in summer 2023

1st module testing at Bern Module at Fermilab

Field uniformity 
study at SLAC

● NuMI provides an intense 
source of neutrinos & muons

● Demonstration of these new ML 
simulation and calibration 
techniques for LArTPCs, and 
optimization towards DUNE

○ AI/ML reconstruction already 
under development

○ SIREN optical model developed



Research Schedule
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Move to December @ SLAC?Tasks to be fleshed out and assigned



In-person Workshop at SLAC
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● Japan-side budget allows e.g. 4 people travel for 2 weeks, this fiscal year (FY)
○ Project will be reviewed then budget decided for the following 2 FYs

● Hack-a-thon-like format with code sprints
○ Tasks to be defined as we ramp up these coming months

● Candidate dates to be decided this meeting, then poll will follow
○ Sep. 25 - Oct. 6 (too soon?)
○ Not Oct. 9 - 13 (JPS-APS Hawaii)
○ Not Oct. 23 - 27 (HK CM)
○ Not Nov. 6 - 10 (T2K CM)
○ Not Nov. 27 - Dec. 1 (SK CM)
○ Dec. 4 - 15?
○ Early next year?



Collaboration Name?
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● Urgent in case we want to include in mailing list name, GitHub name, etc.

● Any ideas?

○ Differentiable Signal Propagation Project (DSPP)

○ …



Meeting Agenda
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Summary
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● Next generation long-baseline neutrino oscillation experiments will require 
unprecedented precision understanding of their detectors

● Existing simulation, calibration, and reconstruction analysis pipelines are becoming 
a limiting factor in this endeavor

● Proposed novel machine learning algorithms to solve these modeling and 
computational issues

○ Common tools to be shared between US-Japan
○ Seed for community-wide effort

● Meeting notes (feel free to contribute): 
https://docs.google.com/document/d/1aw6Yv7exMGs7tk4SyKdBMq-r3j7zVS58mY
JjLiUT3hw/edit?usp=sharing

https://docs.google.com/document/d/1aw6Yv7exMGs7tk4SyKdBMq-r3j7zVS58mYJjLiUT3hw/edit?usp=sharing


References
● Project Abstract
● Project Proposal
● Project Plan (for KEK)

August 7, 2023                                                                     Machine Learning for Neutrino Oscillation Experiments                                                                              22

https://triumfoffice365-my.sharepoint.com/:b:/g/personal/pdeperio_triumf_ca/EUHbbjP_j61IgtSkp5uuyWUBSbpRmh4dUu7_V9Uf9j7vhg?e=ET60m4
https://triumfoffice365-my.sharepoint.com/:b:/g/personal/pdeperio_triumf_ca/Ebc6teuimlZKpwRhiHj5sUcBZZofjfBQtgjyNFIzRbnPvQ?e=WJGQjp
https://triumfoffice365-my.sharepoint.com/:b:/g/personal/pdeperio_triumf_ca/Ee4KeL7faRpNsxOlBPFvvwIBBSOQm4AYMffjwY7_TH2_JQ?e=z2JeFk
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How: Differentiable Detector Physics Simulator (DDSim)
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physics model 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Approximated 
gradient

Exact gradient

Gradient-based optimization



Neural differentiable surrogate for optical detectors
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Differentiable Neural Scene Representation

NeRF: breakthrough on 
high resolution image 
representation by a very 
simple neural network

SIREN: success of learning the 
1st and 2nd order derivatives

ACORN: scalable version of SIREN 
by adding spatial feature compression 
(essentially a learnable kd-tree) 

… only a few examples

https://www.matthewtancik.com/nerf
https://vsitzmann.github.io/siren/
https://www.computationalimaging.org/publications/acorn/


AD-Enabled Detector Physics Simulator
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SIREN

● Enable Automatic Differentiation (AD): 
○ Same physics formula, now differentiable
○ Backed-up by a large AI/ML research community
○ Speed up by enabling co-processors (GPUs/TPUs)

● Successful demonstration for LArTPC imaging detector
○ End-to-end: simultaneous optimization of multiple detector physics parameters
○ On-going study: the robustness of the fits, modeling of poorly understood physics (e.g. electric field)

Detector Simulation
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Data Reconstruction in Experimental Particle Physics
Cross-domain HEP AI ecosystem

Education and 
training

Open source 
and public 

data

Distributed 
computing at 

scale

ML is a “solution pattern” v.s. a domain-specific “hard-coded” solution. 
It’s naturally reusable across domains including software tools 

supported by a large community of researchers. 

HEP Ecosystem for AI research
● Accessible education and training at all levels
● Reusable software tools to unlock modern compute 

accelerators and networking (distributed ML)
● Public datasets with documentation and performance 

metrics for transparent, reproducible science
● Artificial Intelligence and Technology Office (AITO)

○ Federated, equitable, responsible, trustworthy AI
○ AI is an accelerator. It is coming. Don’t avoid. 

Participate to make sure the use is good.

https://www.energy.gov/sites/default/files/2021-09/AITO%20Program%20Plan%2009-16-2021.pdf


Evolution of the Universe

August 7, 2023                                                                     Machine Learning for Neutrino Oscillation Experiments                                                                              28

Proton Decay → GUTs Matter - Antimatter Asymmetry Multi-messenger astronomy

A. Franckowiak

ν
γ

p

10,000,000,001
matter

10,000,000,000
anti-matter

1 
matter

H. Maruyama



● Example: “Visibility Map” (or light scattering table for WC) derived from massive 
photon simulations, encoded in a multi-dimensional table

● Issues: “static” and not scalable

● SIREN is an implicit 
representation of a 
continuous function 
in space 

○ Can be seen as a 
trade-off between 
an analytical 
function and 
a table

SIREN as a DDSim for Optical Detectors
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Map

SIREN

Probability of detecting photon produced at given position
(2D slice of 3D voxelized volume) arXiv:2211.01505

https://arxiv.org/abs/2211.01505


SIREN as a DDSim for Optical Detectors
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Map

SIREN

Derivative of previous slide 
(2D slice of 3D voxelized volume)

● SIREN is designed to represent (learn) the gradient surface hence “differentiable”
● Can be optimized directly by minimizing “a data/MC discrepancy” with control 

samples

● SIREN is an implicit 
representation of a 
continuous function 
in space 

○ Can be seen as a 
trade-off between 
an analytical 
function and 
a table

arXiv:2211.01505

https://arxiv.org/abs/2211.01505


● Preliminary demonstration on real DUNE ND prototype data strongly promising
● Optimized as a simulator + applied in reconstruction (inverse solver)

SIREN as a DDSim for Optical Detectors
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SIREN
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Differentiable Neural Scene Representation
SIREN trained on “Toy + Noise” 

successfully learned the underlying 
analytical function shape (simulation)

SIREN for LArTPC detectors

● Designed as an implicit representation 
of a continuous function in space 
(suited to “visibility”, “E-field”, etc.)
○ Can be seen as a trade-off between 

an analytical function and a table

● “Differentiable” implies we can directly 
optimize against “data v.s. simulation 
discrepancy” given control samples

SIREN provide 
improvement 
on simulation

already! 

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors



The NuPRISM Concept
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Neutrino energy spectrum depends on off-axis 
angle to the neutrino beam source

Moving IWCD vertically → varying off-axis angle 
→ measurements with differing energy spectra

Linear combinations of measurements at 
off-axis angles can mimic a monochromatic 
beam, or the far-detector spectrum



The Need for a New Near Detector
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Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector 1.5

Total 6.0

T2K: Phys. Rev. D 103, 112008 (2021)

Need to reduce to <3% for Hyper-K

Imperfect extrapolation of 
neutrino flux & cross-section 
from near detector to Super-K

Differing energy spectra between 
near and far detectors

https://doi.org/10.1103/PhysRevD.103.112008


The Need for a New Near Detector
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Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector 1.5

Total 6.0

T2K: Phys. Rev. D 103, 112008 (2021)

Need to reduce to <3% for Hyper-K

Uncorrelated processes 
between near detector and 
Super-K 
(Non-QE scattering, pion production, 
multi-nucleon knockout, etc.)

Large energy reconstruction errors

https://doi.org/10.1103/PhysRevD.103.112008


The Need for a New Near Detector
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Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector 1.5

Total 6.0

T2K: Phys. Rev. D 103, 112008 (2021)

Need to reduce to <3% for Hyper-K

Difficult νe (ν̅e) measurement at 
near detector (mostly νμ (ν̅μ) 
beam and γ backgrounds) 

T2K: Phys. Rev. Lett. 113, 241803 (2014)

https://doi.org/10.1103/PhysRevD.103.112008
https://doi.org/10.1103/PhysRevLett.113.241803


IWCD Measurement of νe (νe̅) 
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νe candidates in 
10 years

Constrain                   using 1% νe (ν̅e) contamination in beam

γ background mostly mitigated by water Cherenkov active shielding

 



The Need for a New Near Detector
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Error Source % Error for 
CPV search

φ + σ (ND constrained) 2.7

φ + σ (ND unconstrained) 1.2

Nucleon removal energy 3.6

SK π re-interactions 1.6

σ(νe), σ(νe̅) 3.0

NC γ + other 1.5

SK detector 1.5

Total 6.0

T2K: Phys. Rev. D 103, 112008 (2021)

Need to reduce to <3% for Hyper-K

Neutral current 
backgrounds lacking 
data driven constraints

https://doi.org/10.1103/PhysRevD.103.112008


e / μ Classification in IWCD
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● Constrain                   using 1% intrinsic νe (ν̅e) in beam

● Need >~1000 in μ rejection (>99.9%)

● Can be achieved in IWCD with ML

● Factor 105 speedup

e efficiency when rejecting 99.9% of μ-

ResNet
fiTQun

Truth Quality Cuts:

Tracks ~fully 
contained

&& Distance from 
wall > 50 cm

Preliminary

Prelim
inary

muons
electrons



● Need data driven constraints on γ backgrounds

● γ and e almost indistinguishable in water 
Cherenkov detectors

○ Potential discrimination shown for the first time

● ML shows promise 
with at least 
statistical separation

Gamma (γ) Identification
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γ
e+

e-

e
e-like

e efficiency when rejecting 80% of γ

IWCD ν Beam MC

Preliminary

ResNet Output: P(γ)

νe CC0π

ResNet

fiTQun

Preliminary
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Constrained Modeling of the Experiment
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C
on

st
ra

in
ts

● A coherent method exists for constraining (degenerate) fundamental physics 
parameters of the neutrino flux and interactions with measurements

● This still needs to be developed for detector physics parameters

✓ ?



IWCD & Hyper-K Photosensor Development
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Pulsed LED

Magnetometer

Continuous LED
● Multi-PMT (mPMT): 

19 x 3” diameter
PMTs in a water-
tight vessel with
HV and electronics

● Pulsed and 
continuous LEDs 
for calibration:

○ PMT timing
○ Water properties
○ Detector geometry

● Sensors for 
magnetic field 
monitoring



Overview: Next Generation Experiment
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Hyper-Kamiokande New Near Detectors J-PARC

● Bigger and more sensitive than ever
○ Fiducial mass 8x Super-K
○ J-PARC beam 2.5x more powerful 

→ Neutrino rates 20x T2K

● Precise systematic understanding becomes 
critical to the % level

○ New near detectors and photon detectors
○ New calibration and event reconstruction techniques
○ New supporting external data from auxiliary experiments



T2K-SK Multi-Ring Datasets for Future Analyses
● Second dominant interaction

channel: resonant 1π production
● Expected to improve oscillation 

parameter measurements
○ E.g. ~12% increase in νe signal statistics

● New BDT pushing the limits of traditional 
likelihood reconstruction algorithm
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l-

νμ CC1π+ νe CC1π+



Multi-Ring Reconstruction in the Further Future
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Goal:

First attempt on 
π0 decay events 
in IWCD: 
~80% accuracy

Observed charge

● More machine learning: panoptic segmentation
● Towards improving multi-ring & multi-GeV event 

classification and reconstruction
○ ν mass ordering, ντ appearance, δCP



Differentiable Physics Models

Modeling
Detector Physics

Example: Liquid Argon TPC
Objective: given a calibration dataset 

(i.e. images of particle trajectories 
with approximated dE/dX values), 

“fit” the detector physics parameters
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… 

Detector Simulation

Example: Liquid Argon TPC
● Charged particle ionize electrons
● Electrons drifts under E-field
● Signal diffuse and attenuated

Modeling
Detector Physics

Differentiable Physics Models
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… 

Detector Simulation

Example: Liquid Argon TPC
● Charged particle ionize electrons
● Electrons drifts under E-field
● Signal diffuse and attenuated

Differentiable Physics Models

Optimizing the “lifetime” 
physics parameter directly 

from calibration dataset
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Differentiable Physics Models

Diffusion during the drift

Ionization (signal) yield

Work credit due (from left): 
ML/Math: Youssef N., Sean G., Daniel R.
neutrino: Yifan C., Roberto S.

Lots of applications

● Simultaneous multi-parameter fit

● Inter-parameter dependency study

● Automation of calibration workflow

● Inverse imaging (i.e. reconstruction)
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The Core Idea:
Differentiable Physics Modeling
And Applications in DUNE/HK
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