Thoughts on Future Calorimetry

Issues are generally well known for increasing precision of calorimetry.

- Cost/performance
 - Reality looms over over most discussion for industrial scale instrumentation.
 - For R&D purposes, assume these issues get better with time.
- Signal collection / active volume / granularity
 - Speed/Efficiency of charge collection, light collection
 - Metalenses, designer optical impedance and filter technologies
 - Direct integration with (in)organic scintillator block fabrication?
 - (Effectively) Large area sensors
 - Integration of light concentrators/AR optics into sensors
 - How to go beyond silicon wafers? New printable electronics technologies? Much room for exploration for thin film tech, eg huge industrial base already existing forOLED displays.

Thoughts on Future Calorimetry

- Signal Readout
 - Dynamic range for ECAL
 - 10MeV—100GeV @ higgs factor, O(13-14 bits)
 - ~50–100MeV--10TeV @ super large hh machine, O(15-16 bits)
 - Readout and sensor integration, ADC/TDC
 - Fight the tyranny of FPGA resource limits: fast, controlled-latency interfaces to CPU/GPU for L1 triggers
 - Move more towards computing HW model for R/O, reduce dependence on old tech due to long lead times

Calibration/operations

- Stability
 - Possible radiation resistance
- Embedding calibration hardware at cell level

Thoughts on Future Calorimetry

- Synergies
 - PFA optimized, huge channel counts
 - High resolution / PFA balanced, more moderate channel counts / optimal E resolution
 - Exploit specific capabilities of calorimeters
 - Time spectrum of shower development
 - New paradigms for DAQ, eg continuous readout w/ RT analysis in larger time windows following L1 triggers
 - LLPs
 - (partial) collection of neutron afterglow to improve hadron resolution
 - Improvements on GEANT performance, materials and physics modeling