Motivation: Future Scale-up Calorimeters

- **Ex:** PIONEER Calorimeter for Rare Pion decays (arXiv:2203.01981)
 - Compact, given 25 radiation length requirement
 - Fast, given ~300 kHz beam rate requirement
 - Bright, given 1-2% energy resolution requirement
- Calorimeter: 10 tons
- Baseline design: LXe or Inorganic crystal; how to reduce the cost? (from 10s of $M)
- A cost effective, scale-up calorimeter using liquid scintillators that performance and compatibility have been largely improved over the past decades.

<table>
<thead>
<tr>
<th>Inorganic crystal</th>
<th>LXe</th>
<th>Liquid Scintillator</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000s</td>
<td>$1,000s</td>
<td><$1</td>
</tr>
<tr>
<td>$ per kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minfang Yeh CPAD 2023
Proposed R&D tasks

- The new Water-based Liquid Scintillator provides direct Cherenkov and scintillation detection with additional safety improvement and the capability of loading heavy metal at 10s of percent.
 - responses with dose and energy & rad. damage studied by medical physics
- A highly scattering (~mm) WbLS incorporating with pixelated technology using SiPM for particle tracking and discriminations (homogeneous, self-imaging, and no dead material).
- Leverage the existing efforts from neutrino community and scale-up facilities at nat’l labs.
- Given a WbLS loaded with 20%W
 - Light-yield (>2,000 photons/MeV), decay time (1.2 ns), optical length (>2 m), radiation length (~10 cm)
- A R&D consortium of large liquid calorimeters for next-generation experiments.