
Rogue: Back-End Integration

Omar Moreno, Ryan Herbst, Larry Ruckman, Ben Reese, J.J. Russell

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

Rogue is an open source C++/Python hybrid architecture platform that facilitates the communication with
hardware modules
● Most of the C++ base classes expose their methods via Python

○ Allows for rapid prototyping in python with the ability to use underlying C++ for performance
● For most use cases, development is done in Python

Low level C++ interfaces
● Memory API - Interfaces with hardware register space
● Stream API - Interface for bulk data movement and asynchronous messages

High level Python interfaces (PyRogue)
● Uses a hierarchical tree structure to organize hardware components in a system
● Layered design docouples tree from communication interface used to access hardware

Open source and easily deployable
● https://github.com/slaclab/rogue
● Conda recipes and Docker images are available

What Is Rogue?

2

https://github.com/slaclab/rogue

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

● Top level API for writing Rogue applications
which provides a mechanism for organizing
elements into a tree

● Tree describes configuration and status
registers that exist in connected hardware,
such as FPGA firmware, ADCs, DACs and
ASICs.

● Tree Node Types:
○ Devices
○ Variables
○ Commands
○ Root

PyRogue Management Tree
Root

Device
(e.g. FPGA)

Device
(e.g. ADC)

Variable
(e.g. Status)

Command
(e.g. Trigger)

Variable
(e.g. Sample

Rate)

Variable
(e.g. Mode)

3

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

● Containers for logical groups of Variables, Commands, and other Devices
● Represent an organizational unit of hardware or other logical element.
● Examples:

○ An I2C or Serial Peripheral Interface (SPI) ADC with a set of configuration registers
○ An FPGA with many registers, divided into sub-Devices by functionality
○ A sensor ASIC with a set of configuration registers

● Each Device is instantiated with an address offset relative to its parent
● Each Device “owns” a segment of remote address space in hardware
● A special Root Device must be instantiated at the base of every Device Tree

○ Has specific APIs to manage the tree and expose it to external systems

Device

4

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

● Variables describe a discrete values in the system
● Mostly they are used to describe FPGA, ADC, DAC or ASIC registers.
● RemoteVariable fields allow for a wide range of register types to be described

○ Name – Every node needs one
○ Mode – Read/Write, Read-only, Write-only
○ Address offset – Byte address offset relative to parent container
○ Bit size – Number of bits in register (common to have weird sizes)
○ Bit offset – Bit shift required within byte address
○ Data Model – Unsigned int, signed int, endianness, float, string

● LinkVariables allow for creation of Variables that are transformations of other Variables
○ Simply define a set of functions to convert to and/or from and number of dependent

Variables
○ Example: Convert a raw ADC value to Volts, temperature, or whatever unit it ultimately

represents

Variables

5

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

● A Command is essentially a wrapper around a Python function and is used to encapsulate common
actions

● RemoteCommand
○ Simple actions on a single hardware register
○ Supports a number of optional arguments

● LocalCommand
○ Perform a sequence of operations within software
○ Can include sequences of variable writes or other Command executions
○ Ex: Complex initialization sequence across several Devices

Commands

6

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

● Used to build memory access bridges to custom hardware while keeping a local mirror of
register sets

● Can be used to build abstractions for any number of memory busses with arbitrary word
alignments, address sizes and access sizes

● Devices in the Device Tree use the Memory API to reach hardware registers
● Several useful memory bridges are included with Rogue:

○ For Zynq SoCs, Rogue includes a Memory bridge for accessing FPGA registers on the
AXI-bus

○ VCS RTL firmware simulation bridge
○ Local memory

Memory API

7

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

● Used to move bulk data between rogue processing elements and between hardware and software
● Can describe complex data processing pipeline, or simply direct data to a file
● Cascadable nature of API allows processing to be added to data chain by inserting new modules

anywhere in the chain.
● Stream modules consist of two main interfaces

○ Sender (Stream Master) which request the frame and sends the data to other modules in the
chain

○ Receiver (Stream Slave) which is used to process the data in a frame

Stream API

8

RSSI Data
Formatter

Event
Builder File Writer

Reliable SLAC
Streaming Protocol

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

EPICS support is provided via the python library P4P: https://mdavidsaver.github.io/p4p/overview.html
● P4P is a wrapper around PVAccess, a high-performance network communication protocol meant

to succeed EPICS Channel Access
○ Supports Get, Put, Monitor and RPC operations

When enabled, a Process Variable (PV) is auto-generated for every variable in the pyrogue tree
● Commands are handled using Remote Procedure Calls
● Variables can be filtered or renamed if desired

EPICS

9

https://mdavidsaver.github.io/p4p/overview.html

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

In addition to serving as a stand-alone data acquisition solution, Rogue has been successfully
integrated into several back-ends including
● CEBAF Online Data Acquisition (CODA)

○ C++/Java framework developed by Jefferson Lab for implementing data acquisition solutions
at large (and small) scale

● EUDAQ
○ C++ data acquisition framework designed to be modular and cross-platform

● Psdaq
○ C++ data acquisition framework used by LCLS-II

● Observatory Control System (OCS)
○ Python based distributed control system for astronomical observatories

Back-end Integration

10

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

The Heavy Photon Search Experiment

Pair Spectrometer

e-
e-

e+

Silicon Vertex Tracker (SVT)
Split into two volumes to avoid intense flux of

scattered beam electrons. Used for precise
momentum and vertex determination

SVT Vacuum Chamber
Si tracker placed in vacuum in

order to avoid backgrounds due to
beam-gas interactions

Electromagnetic Calorimeter
Used for triggering and particle ID~10-3 X0 Tungsten Target

Thin target to reduce multiple
scattering

Linear Shift Motion System
Allows adjustment of deadzone

between SVT volumes

B = .25 T

SVT + ECal DAQ capable of 50 kHz

High intensity e- beam
 Courtesy of CEBAF @ JLab

Installed within the Hall B alcove at Jefferson Lab upstream
of the CLAS12 detector 11

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

Tracker Data Flow

Hybrid 0

...

Front
End

Board 0

ROC
Hybrid 1

Hybrid 2

Hybrid 3

Hybrid 34

Hybrid 35

Hybrid 32

Hybrid 33

Front
End

Board 9

...

Copper DPMRCE’s

DTM DPM

DPM

DPM

DPMRCE’s

DTM DPM

DPM

DPM

ROC

CODA

Event
Builder

Event
Transport

Event
Recorder

DAQ Server

Fiber RSSI

TCP/IP

12

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

CODA Integration
The Readout Controller (ROC) app is responsible for
collecting data from the front-ends and passing it to the
event builder
● Each ROC will have an associated readout list which

is a C library that defines how the ROC should be
read out and what needs to be done during state
transitions

The tracker readout list instantiated an RSSI client which
received the data from the RCE’s, unbatched it and copied
the events into CODA provided memory

State transitions were handled in a similar way except
TCP/IP was used as the transport protocol

13

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

LDMX is a SLAC based experiment that aims to
decisively test a variety of dark matter scenarios in the
MeV-GeV mass range.

Expected to run in FY27 but test beams will be used to
understand several aspects of the detector
● First test beam took place in the spring of 2022 at

CERN and used a simplified version of the
Hadronic calorimeter and Trigger Scintillator

● Next test beam will be at SLAC in spring of 2024

The Light Dark Matter eXperiment (LDMX)

18D36 Dipole

1.5 T

Hadronic
Calorimeter

Electromagnetic
Calorimeter

Tagger
Tracker

Recoil
Tracker

.1X0 W
Target and trigger scintillator

e-

14

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

EUDAQ Overview

A central Run Control manages different processes via
TCP/IP including
● Producers - process used to receive data, initialize,

configure and start/stop hardware
● Data Collector - Receives data from all producers

and does event building and data writing
● Log Collector - Compiles all logs and displays them

to the user
● Monitoring - Reads data and creates online plots

15

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

DPMRCE’s

DTM DPM

DPM

DPM

Data Flow

DAQ Server

Data Producer
(eudaq)

HGCROC

Run Control
(eudaq)

Disk
TCP/IP

Monitoring
(eudaq)

Timing Module

Data Producer
(eudaq)

Data Producer
(eudaq)

Data/Config

16

CAPTAN

TCP/IP

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

The stream API is used to establish a TCP/IP bridge
between an RCE and the DAQ server
● The stream is extracted using the stream API within

an eudaq producer and repackaged into a eudaq
event

● The repackaged event is shipped to the data
collector which writes the events to disk and sends
it to the connected ROOT based monitoring app

The run control communicates state transitions to the
eudaq producers, data collectors and monitors via tcp/ip
● The stream API was used to receive the state

transitions within a producer and ship them off to
the RCE server using the same bridge that was
established to stream data

● The RCE server then listen for the specific
transition string and would take actions depending
on what state it was in

Rogue Integration

17

 O
. M

or
en

o
(S

LA
C

Na
tio

na
l A

cc
el

er
at

or
 La

bo
ra

to
ry

)
CP

AD
 W

or
ks

ho
p

 N
ov

em
be

r 9
, 2

02
3

Rogue is an extremely extensible DAQ architecture that has been extensible used across several
experiments
● Current doc: https://slaclab.github.io/rogue/
● Example: https://github.com/slaclab/rogue/tree/main/python/pyrogue/examples

Rogue is actively being developed with updates and enhancements pushed every week
● EPICS capabilities are being expanded
● Ongoing enhancements to online monitoring
● Expand run control capabilities
● Add memory bridges to new hardware
● Continue to explore integration with other DAQ systems
● Continue to identify performance improvements

Future Development and Conclusion

18

https://slaclab.github.io/rogue/
https://github.com/slaclab/rogue/tree/main/python/pyrogue/examples

