

Superconducting Nanowire Single Photon Detectors for Dark Matter Detection and HEP

> Matt Shaw Jet Propulsion Laboratory

> > 7 November 2023 CPAD Workshop, SLAC

© 2023 California Institute of Technology. All rights reserved. Government sponsorship acknowledged.

JPL Superconducting and Quantum Devices Group

- Superconducting Nanowire Single Photon Detectors
- Microwave Kinetic Inductance Detectors
- Kinetic Inductance Traveling-Wave Parametric Amplifiers
- Quantum Capacitance Detectors
- Transition-Edge Sensors for Cosmic Microwave Background
- Thermopile Arrays for Earth and Planetary Science
- SIS and HEB Mixers for Terahertz Astronomy
- Superconducting Circuits for Quantum Computing

JPL has been a world leader in superconducting detector technology development since 1981

JPL SNSPD Development Team

JPL Staff Researchers

Emma Wollman

Boris Korzh

Andrew Beyer **Bruce Bumble**

Jason Allmaras

Ioana Craiciu

Ryan Briggs

Postdocs

Gregor Taylor Emanuel Knehr **Graduate Students**

Dan Shanks

Fiona Fleming (Heriot-Watt)

Sasha Sypkens (Arizona State)

Key Collaborators

Andrew Mueller (Caltech APh)

Jamie Luskin (Maryland)

(Caltech MS)

JPL

JPL SNSPD Development Team

JPL Staff Researchers

Postdocs

Emma Wollman

Join us!

Always recruiting postdocs, students,

nanofabrication engineers

mattshaw@jpl.nasa.gov

Ryan Briggs

Gregor Taylor

Graduate Students

Andrew Mueller (Caltech APh)

Emanuel Knehr

Jamie Luskin (Maryland)

Sahil Patel (Caltech MS)

Sasha Sypkens (Arizona State)

BERKELEY LA

1 HOLOH

JPL

milab

Superconducting Nanowire Single Photon Detectors

Present State of The Art in SNSPDs

. . .

NIST

1467

JPL

JPL Particle-like DM Search: Electron Recoil in GaAs

MATTI

SNSPDs for BREAD

- Delivering large-area
 SNSPDs for 1 μm
- Developing large arrays at longer wavelengths (10 - 30 µm) and pushing energy threshold lower

Single Photon Sensitivity up to 29 µm (41 meV)

- SNSPD nanobridge with Si-rich WSi for reduced superconducting gap energy (1.3 K Tc, 80 nm nanobridge)
- Now fabricating WSi devices with an 800 mK Tc for even lower energy threshold

Pushing to Lower Wavelengths

- Co-Sputtering Wsi (30:70) target with Si Target to further increase Si content
- Targeting Tc of 800mK while maintaining a thicker film to make fabrication easier

Pushing to Lower Wavelengths

- Co-Sputtering Wsi (30:70) target with Si Target to further increase Si content
- Targeting Tc of 800mK while maintaining a thicker film to make fabrication easier

SNAP Devices with Low-Tc WSi

SNAP Devices with Low-Tc WSi

SNAP Devices with Low-Tc WSi

JPL

Mn Doped WSi for Longer Wavelengths

- · Dilute magnetic impurities create additional disorder in thin films, to enhance energy sensitivity
- Curves above compare devices with same resistivity and critical temperature (800 mK)

Technology Development Path for Low-Threshold SNSPDs

- Materials development to push energy threshold even lower
- Efficient optical coupling at mid- and far-infrared wavelengths with antennas
- Frequency domain multiplexing using kinetic inductance parametric upconverter
- Calibrated efficiency measurements at mid- and far-infrared wavelengths
- Improved understanding and mitigation of low-energy backgrounds
- Integration into dark matter experiments

Thanks for your attention!

mattshaw@jpl.nasa.gov

