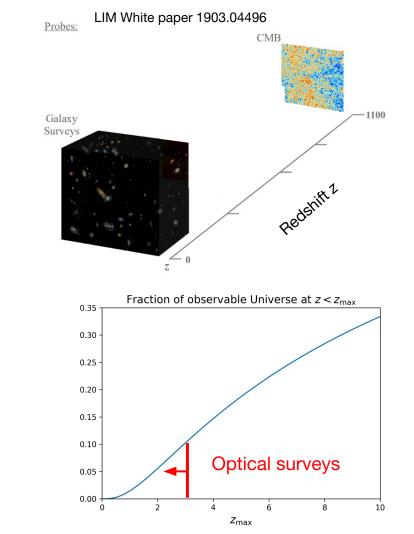
Millimeter-Wave Superconducting Spectrometers for Next-Generation Cosmology

Kirit S. Karkare (SLAC) CPAD, 2023-11-09

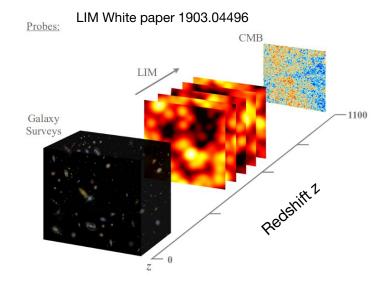

HEP at the Cosmic Frontier

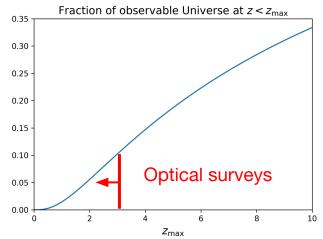
To make progress on key cosmic frontier science questions...

- Dark energy
- Inflation
- Light relativistic particles

...we need cosmic surveys over **larger volumes** (better statistics) and **higher redshift** (break degeneracies).

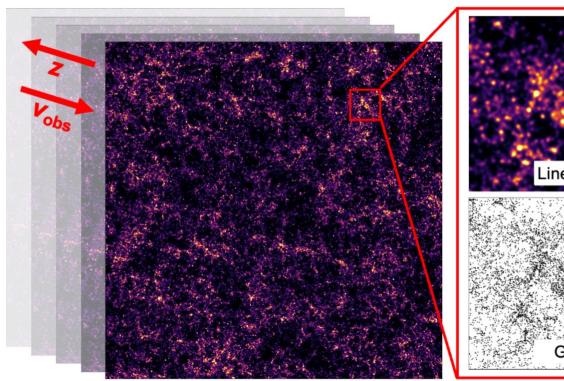
But our standard probes leave a huge fraction of the universe unmeasured!

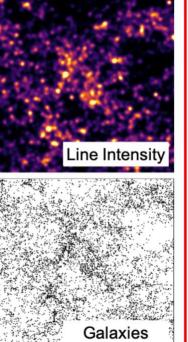

HEP at the Cosmic Frontier


To make progress on key cosmic frontier science questions...

- Dark energy
- Inflation
- Light relativistic particles

...we need cosmic surveys over **larger volumes** (better statistics) and **higher redshift** (break degeneracies).


But our standard probes leave a huge fraction of the universe unmeasured!



Line Intensity Mapping (LIM)

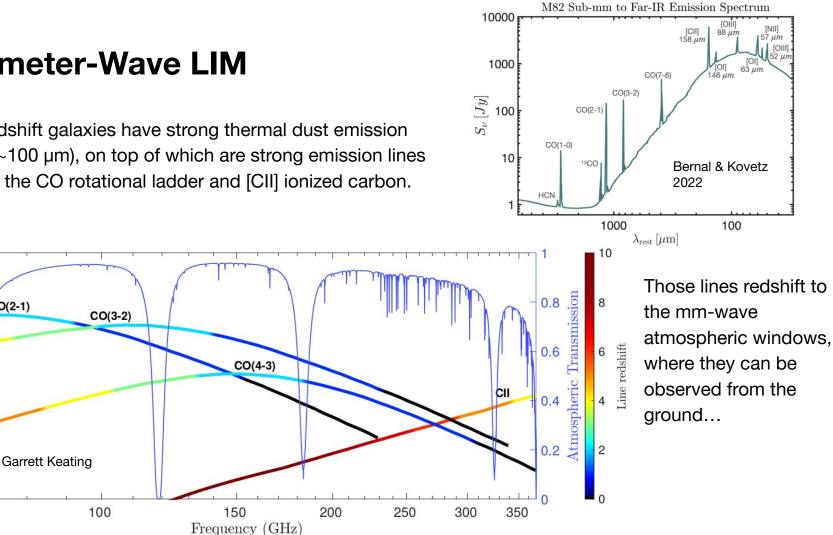
Karkare+ 2203.07258 Snowmass white paper

Integrate over individual sources while retaining large-scale cosmology.

Much more efficient than object detection at high redshift.

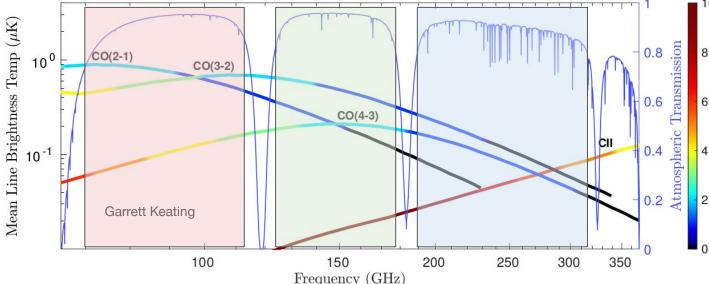
Choose a spectral line – observed wavelength corresponds to distance.

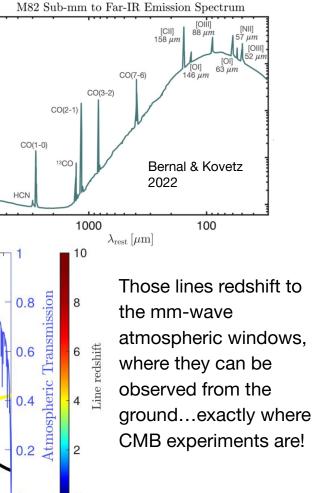
Millimeter-Wave LIM


Mean Line Brightness Temp $(\mu \mathbf{K})$

10⁰

10⁻¹

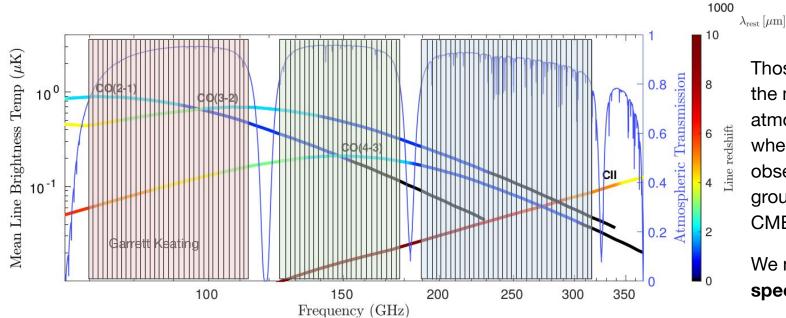

CO(2-1)


High-redshift galaxies have strong thermal dust emission (far-IR, \sim 100 µm), on top of which are strong emission lines such as the CO rotational ladder and [CII] ionized carbon.

Millimeter-Wave LIM

High-redshift galaxies have strong thermal dust emission (far-IR, \sim 100 µm), on top of which are strong emission lines such as the CO rotational ladder and [CII] ionized carbon.

10000


1000

 $S_{\nu} \left[Jy \right]$

10

Millimeter-Wave LIM

High-redshift galaxies have strong thermal dust emission (far-IR, \sim 100 µm), on top of which are strong emission lines such as the CO rotational ladder and [CII] ionized carbon.

Those lines redshift to the mm-wave atmospheric windows, where they can be observed from the ground...exactly where CMB experiments are! We need **mm-wave**

M82 Sub-mm to Far-IR Emission Spectrum

CO(7-6)

CO(3-2)

CO(2-1)

13CO

CO(1-0)

HCN

158 um

2022

[OI] 146 µm

Bernal & Kovetz

100

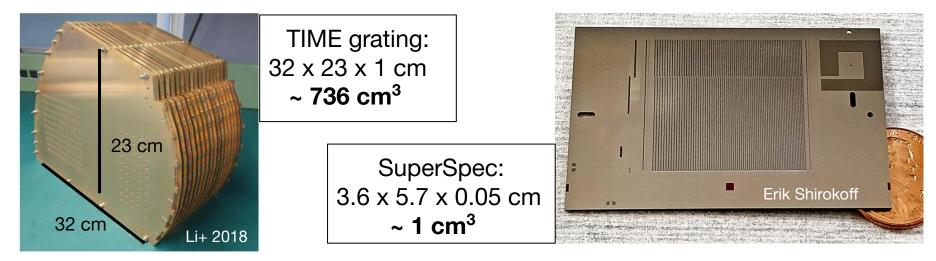
[OIII]

52 un

63 um

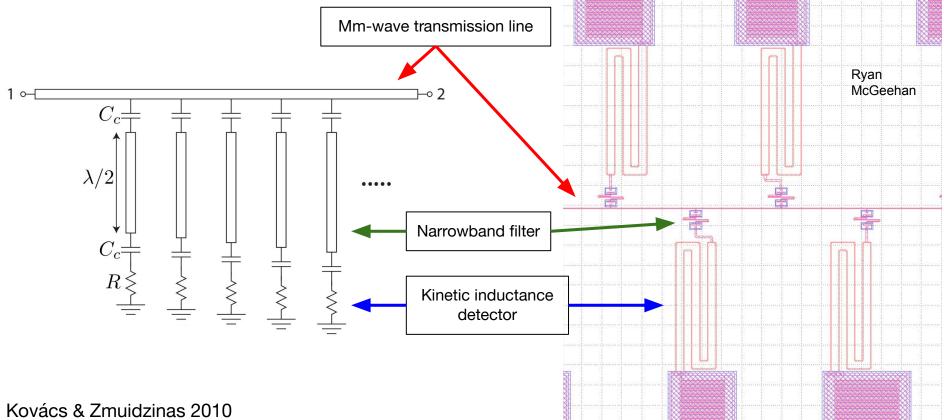
10000

1000


 $S_{\nu} \left[Jy
ight]$

10

spectrometers.


Key Enabling Technology: On-chip Spectroscopy

Contemporary mm-wave spectrometers (gratings, Fourier Transform, Fabry-Perot) are large - only ~10s can fit in a reasonable cryostat.

By printing the spectrometer on a silicon wafer, we can efficiently deploy the hundreds or thousands of pixels we need to do cosmology. To accommodate the large detector counts (hundreds X equivalent CMB receivers), use **kinetic inductance detectors**.

Filter-Bank Spectrometers Realized with Thin-Film Superconducting Circuits

The SPT Summertime Line Intensity Mapper (SPT-SLIM)

<u>Argonne</u>

T. Cecil C. Chang Z. Pan

Cardiff

P. Barry G. Robson

<u>CfA</u> G. Keating

Fermilab

A. Anderson B. Benson M. Young

Student Postdoc co-Pl McGill M. Adamic M. Dobbs M. Rouble

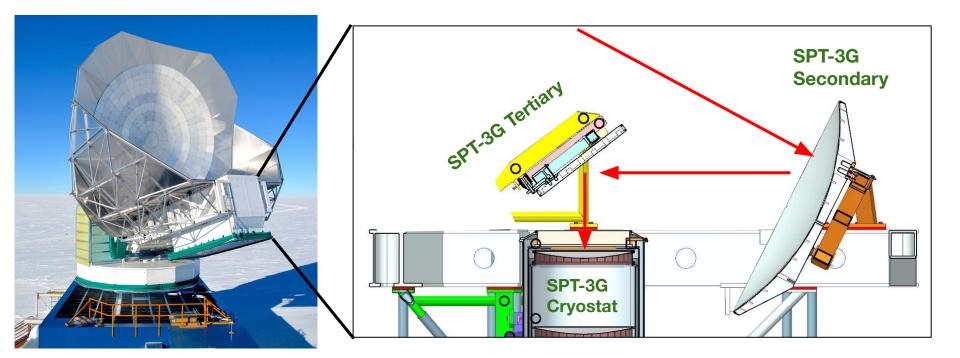
SLAC/Stanford

K. S. Karkare A. Saleem C. Zhang

<u>U. Arizona</u> D. Kim D. Marrone

U. Chicago E. Brooks J. Carlstrom K. Dibert K. Fichman

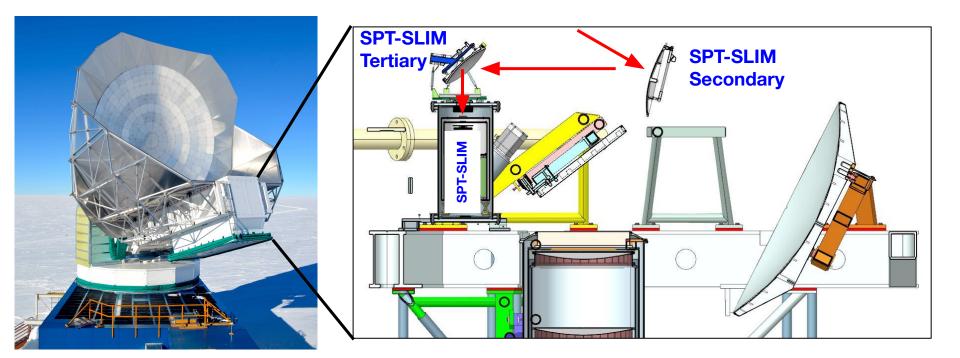
J. Zebrowski


Deploy a LIM pathfinder to the South Pole Telescope during the austral summer season (Nov–Feb) while SPT-3G is not observing.

Demonstrate the enabling technology of on-chip spectrometers for the LIM measurement.

Fully funded by NSF and Fermilab in 2021.

See Adam Anderson's poster for more details!

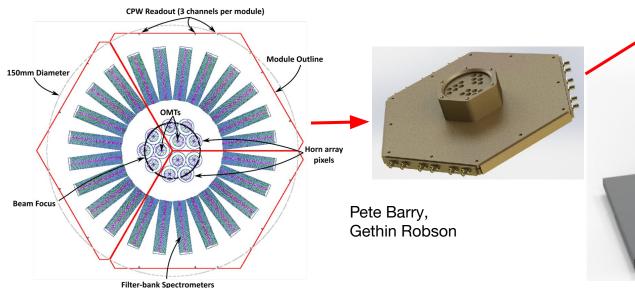

The SPT Summertime Line Intensity Mapper (SPT-SLIM)

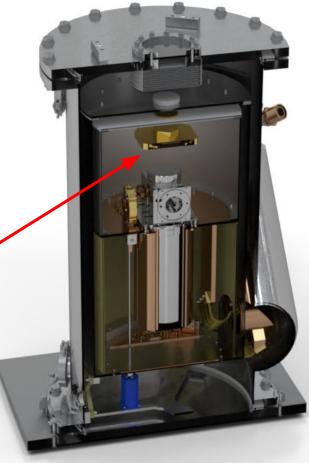
In normal operation, light from the primary is reflected into the receiver cabin, and then into the SPT-3G cryostat...

Karkare+ J. Low Temp. Phys. 2111.04631

The SPT Summertime Line Intensity Mapper (SPT-SLIM)

...but there is also room for a small auxiliary receiver. Just install a pickoff mirror!

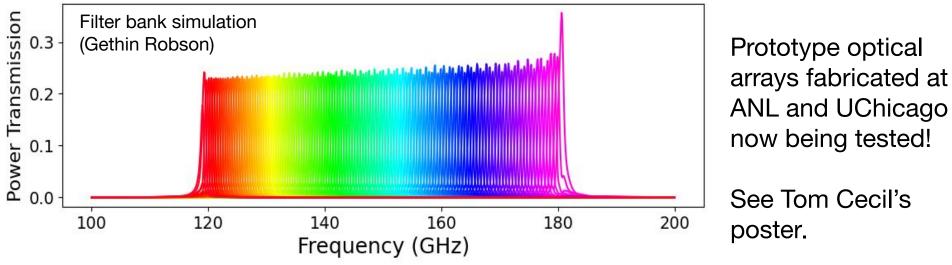

Karkare+ J. Low Temp. Phys. 2111.04631


Don Mitchell

The SPT-SLIM Instrument

12 dual-pol pixels, each feeding two spectrometers.

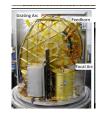
Compact cryostat holds detectors at 100 mK with an adiabatic demagnetization refrigerator.



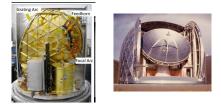
The SPT-SLIM Detectors

Each spectrometer covers 120–180 GHz with R~200 resolution.

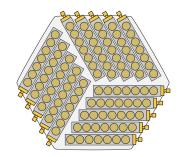
Aluminum KIDs read out from 2-2.5 GHz.



	Spec-hrs	
	Timescale	
	Example	
Neutrino masses	$\sigma(M_{v})$ [eV]	
Dark energy	σ (w ₀) incl. z>3	
Inflation	Primordial FoM	Effective number of modes (x10 ⁻⁶) correlated with the initial conditions


	Spec-hrs	≲10 ⁵
	Timescale	2023
	Example	TIME, SPT-SLIM
Neutrino masses	$\sigma(M_{\nu})$ [eV]	
Dark energy	σ (w ₀) incl. z>3	
Inflation	Primordial FoM	

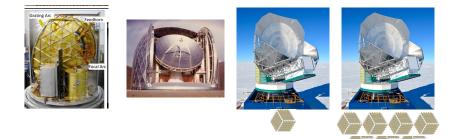
10s of spectrometers, limited deployments



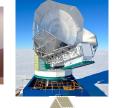
	Spec-hrs	≲10 ⁵	10 ⁶
	Timescale	2023	2026
	Example	TIME, SPT-SLIM	TIME-Ext
Neutrino masses	σ (M _ν) [eV]		0.047
Dark energy	σ(w ₀) incl. z>3		0.03
Inflation	Primordial FoM		0.1

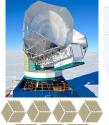
Dedicated facilities

	Spec-hrs	≲10 ⁵	10 ⁶	10 ⁷
	Timescale	2023	2026	2028
	Example	TIME, SPT-SLIM	TIME-Ext	SPT-3G+ one tube
Neutrino masses	$\sigma(M_{\nu})$ [eV]		0.047	0.028
Dark energy	σ(w ₀) incl. z>3		0.03	0.013
Inflation	Primordial FoM		0.1	1

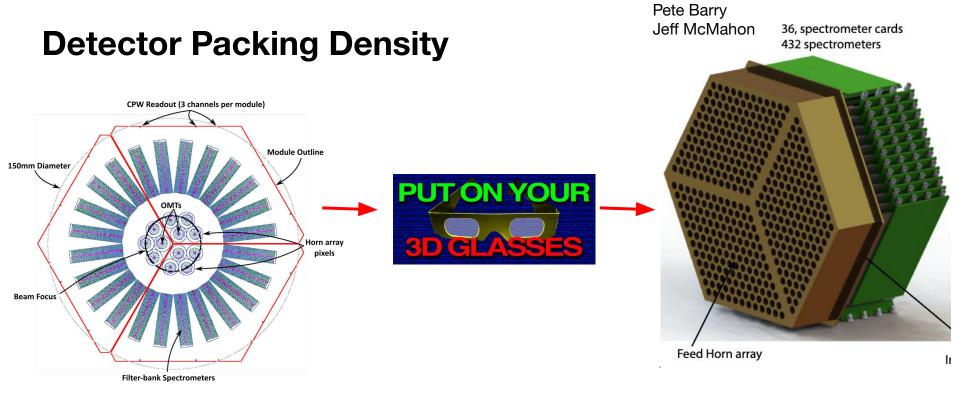

Focal plane with ~hundred spectrometers

DESI: FoM ~ 1


	Spec-hrs	≲10 ⁵	10 ⁶	10 ⁷	10 ⁸
	Timescale	2023	2026	2028	2031
	Example	TIME, SPT-SLIM	TIME-Ext	SPT-3G+ one tube	SPT-3G+ 7 tubes
Neutrino masses	$\sigma(M_{\nu})$ [eV]		0.047	0.028	0.013
Dark energy	σ(w ₀) incl. z>3		0.03	0.013	0.005
Inflation	Primordial FoM		0.1	1	10


MegaMapper: FoM ~ 10

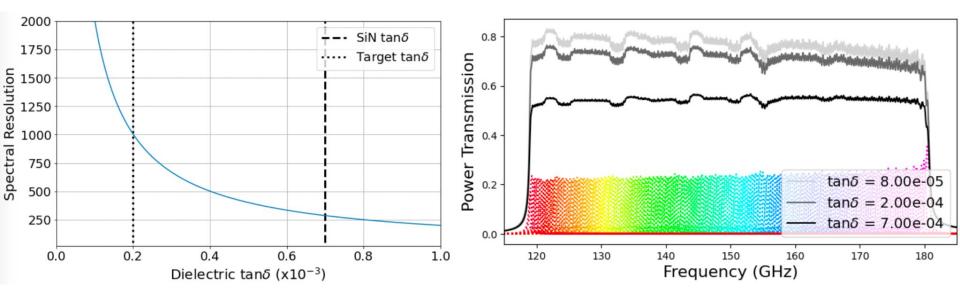
	Spec-hrs	≲10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹
	Timescale	2023	2026	2028	2031	2038
	Example	TIME, SPT-SLIM	TIME-Ext	SPT-3G+ one tube	SPT-3G+ 7 tubes	CMB-S4 85 tubes
Neutrino masses	$\sigma(M_{v})$ [eV]		0.047	0.028	0.013	0.007
Dark energy	$\sigma(w_0)$ incl. z>3		0.03	0.013	0.005	0.003
Inflation	Primordial FoM		0.1	1	10	100



How do we get there?

To achieve cosmological relevance*, we need surveys with >2 orders of magnitude improvement in sensitivity.

- Dedicated wide-field platforms at excellent sites and multi-year observations
- Detector arrays that are as sensitive as possible, with enough spectral resolution to extract all of the cosmological information
 - Presumably this means on-chip spectrometers...
- Readout to accommodate overwhelmingly-large detector counts


*not true for astrophysical relevance

The filter bank takes up an area ~5x the size of the diffraction-limited spot. Can we move the spectrometer out of the focal plane to approach optimal sampling?

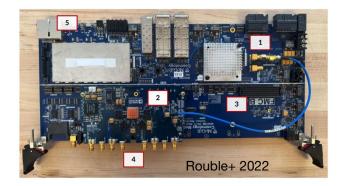
Spectral Resolution and Optical Efficiency

Gethin Robson

For microstrip implementation, loss in dielectric limits resolution and optical efficiency! Promising low-loss candidates pursued by many groups - even a factor of 2-3 reduction in loss could improve filter-bank performance significantly.

High-Density Readout

We are probably forced into GHz frequency-domain multiplexing: a 1000-spectrometer, R=300 array has similar detector count to CMB-S4!


Current gen: ROACH, SMuRF, RF-ICE, etc.

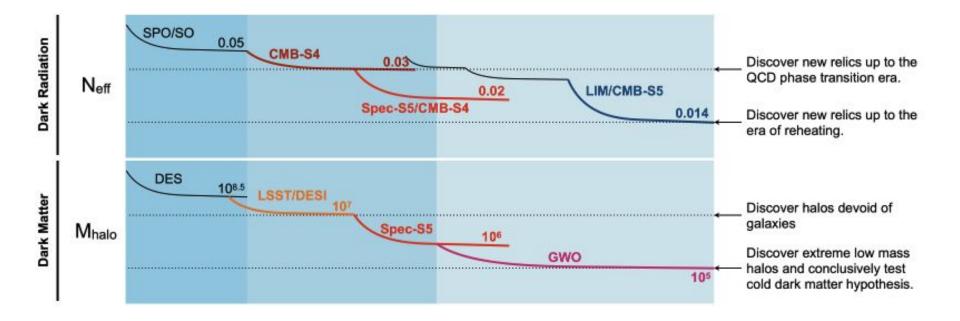
O(1000) channels/line

Can RFSoCs get us to O(10000)/line at ~\$1/channel?

How many coax and LNAs can reasonable cryostats accommodate cryogenically?

Can we get the required Qs and frequency placement?

Conclusions


Millimeter-wave LIM is one of the only feasible ways to measure large-scale structure over extremely large volumes and redshifts - a unique observable for the cosmic frontier.

We're now demonstrating the enabling technology of compact on-chip spectrometers with SPT-SLIM and other projects, and there is a path to scaling up following the example of CMB experiments.

We can re-use CMB infrastructure to deploy at scale (e.g., SPT-3G+ and more!)

There is still a **lot of detector development needed**! Improving spectrometer design, superconducting materials, readout all feasible with ~few \$M efforts.

