

Multifunctional Composite Sensor Support Structure with Integrated Cooling

Eduardo Barocio, Andreas Jung, Sushrut Karmarkar, Pedro D. Soto, Cameron J. Harstfield

November 09, 2023

Outline

- 1. Motivation and Introduction
- 2. Hybrid composite design
- 3. Simulation results
- 4. First prototypes
- 5. Summary, conclusions and future work

Why is mechanics design important? - Future colliders (FCC-hh like)

High-luminosity phase of the LHC as example in this talk, but future colliders

- Momenta and angular ranges up by 10x and 2x
- Challenging for forward tracking/detectors
- Pile-up of a thousand results in very harsh conditions

HL-LHC upgrades as example:

- Support structures need to be optimized, light-weight → minimal mass possible, highly thermally conductive
- CMS HL-LHC upgrades as example

Pixel Layer dose (3.7cm)	HL-LHC 3ab ⁻¹	FCC 3ab ⁻¹	FCC 30 <i>ab</i> ⁻¹	FCC (2.5cm) 30 <i>ab</i> ⁻¹
$ imes 10^{16} n_{eq} cm^{-2}$	1.5	3	30	70
Dose (MGy)	5	10	100	220

Material budgets and mechanics

Substantial R&D on all fronts to make a FCC-hh detector a reality

- Support & Cooling constrains Tracker performance, e.g. thermal runaway
- Mechanics is significant fraction of the material budget
- Material testing standardization for irradiation response

- Can improve b-ID efficiencies by 2-3% per b-jet and high b-jet multiplicity ~10-15%
- Significant improvement by novel approach, b-ID relevant for di-Higgs (priority @FCC-hh)

Current Architecture of Support Systems

- State of the Art: Multilayer Structure
 - Integrates layers of different material systems with low thermal conductivity (e.g., epoxy interface)
 - Extensive multi-step fabrication process
 - Involves metallic cooling lines
 - Fabrication process poses additional challenges for non-planar geometries
 - Interfaces between layers involve thermal and thermomechanical considerations

Multilayer structure

Thermal Performance of Current Architecture of Support Systems

Hybrid Composites for Support Structures with Integrated Services

Two-step manufacturing process to produce monolithic hybrid structures with integrated services

- Additive manufacturing of preforms to provide control of continuous fiber orientation
 - Fiber orientation is driven by thermal and thermomechanical performance requirements
- Compression molding to consolidate printed preforms and to integrate cooling lines
 - Remove voids and reduce effect of interfaces between dissimilar layered materials

Prototype Support Structure with Integrated Services

- Cooling lines molded in.
- Thermal pathways provided by continuous carbon fibers.
- Stiffness provided by ribbed structure and continuous carbon fiber (Weight 60% < sandwich structure).
- Strength provided by continuous carbon fiber
- Compression molding process included:
 - Preform of continuous fiber impregnated with PPS.
 - Printed continuous and discontinuous carbon fiber reinforced PPS.

Continuous Carbon Fiber Inclusion in 3D printed preforms

- Continuous carbon fiber filament produced by pultrusion process.
- 40% by volume of carbon fiber
- Average impregnated filament diameter of 1.5 mm
- Achieved high level of impregnation (>95%)
- Commercial grade of carbon fiber compounded with PPS was used for printing (50% wt. CF-PPS).

Spools of Carbon Fiber

Interior of Impregnation Chamber

Characterization of Thermal Conductivity

- Laser flash technique (ASTM E1461) used for characterizing thermal conductivity of printed material (50% by wt. of carbon fiber reinforced PPS)
- Micromechanics models to predict thermal conductivity of filament with continuous carbon fiber.

Thermal conductivity in the three principal directions of printed short carbon fiber reinforced PPS.

Characterization of Thermal Conductivity

- Micromechanics predictions of thermal conductivity for 40% by volume of continuous carbon fiber reinforced PPS.
 - Two-step homogenization using Mori-Tanaka method.
 - Types of fiber considered: Hexcel AS4¹ and Nippon CN-90
 - Polymer considered: Celanese Celstran 0203P6 PPS²

Hexcel AS4

	Ni	ppo	n CN	1-90
--	----	-----	------	------

Direction	Thermal Conductivity (W/mK)	Direction	Thermal Conductivity (W/mK)
<i>K</i> ₁₁	2.918	<i>K</i> ₁₁	200.2
<i>K</i> ₂₂	0.5	<i>K</i> ₂₂	0.72
<i>K</i> ₃₃	0.5	K ₃₃	0.72

^{1.} Hexcel Corporation. HexTow[®] AS4 Carbon Fiber Product Data Sheet. 2020.

^{2.} Celanese. FORTRON[®] PPS POLYPHENYLENE SULFIDE (PPS). Short-Term Properties Guide. 2016.

Steady State FE Heat Transfer Analysis

- Heat transfer analysis used to drive design of continuous fiber and to investigate effects of fiber thermal conductivity
- Surface heat flux (0.1 1 W/cm²) applied over detector's surface (heat flow of 2.5 – 25.85 W)
- Cooling line set to $-35 \ ^{\circ}C$
- Convection ($h = 7.5 \frac{W}{m^{2} \circ C}$) and radiation ($\epsilon = 0.92$) from exposed surfaces to ambient temperature of $-20 \circ C$
- Assumed ideal bonding between material systems (no thermal resistance)

Finite Element Mesh

Continuous Fibers Reinforcements:

- Hexahedron element mesh (DC3D8)
- Thermophysical properties of continuous carbon fiber reinforced PPS (investigated Hexcel AS41 and Nippon CN-90)
- Considered orthotropic elastic properties and thermal conductivity based on material orientation (Fibers oriented across cooling line)

Continuous Fiber System

Discontinuous Fibers Structure:

- Tetrahedral element mesh (DC3D4)
- Considered properties of short-carbon fiber reinforced PPS (measured experimentally)
- Neglects anisotropic thermal conductivity

Hybrid Compression Molded Structure

Discontinuous Fiber System

Temperature Field with Different Fiber Systems

Steady state temperature field at heat flow of 10.34 W

Hexcel AS4

Temperature Fields at Different Heat Flows

• Fiber system considered: 40% vol. Nippon CN-90 reinforced PPS

Temperature Difference Between Detector and Coolant

Stress Analysis of Hybrid Structure Under Pressure

- Cooling line pressurized at 68.9 Bar
 - Stress in Fiber Direction

 $\sigma_{11} \ll X_1^T \sim 300 - 500 MPa$

Stress Transverse to Fiber Direction

 $\sigma_{22} \ll X_2^T \sim 30 - 50 MPa$

Compression Molding Process

Prototype Support Structures with Integrated Services – AS4 fiber

- Cross section of molded prototype demonstrates:
 - Feasibility of integrating cooling line with non-metallic liners
 - Hybrid continuous and discontinuous fiber architecture
 - Consolidation of multiple material systems through compression molding

Extended Multifunctional Test Structure – AS4 fiber

- Aim to show scale up capabilities of the manufacturing method
- Validate the structure with pressure and temperature testing

Part Performance Simulation for Pressure Test at 600 psi (41.3 bar) Coolant Pressure – AS4 fiber

Preliminary Results – Pressure Test – AS4 fiber

- Pressure test carried out at increments of 3.4 Bar up to 48.3 Bar
- N2 gas used for pressure test
- Sample held for 5 minutes at each pressure

Pressure regulator and pressure gauge assembly

Preliminary Results – Thermal Response – AS4 fiber

- Thermal response test carried out with room temperature coolant and film heaters to mimic sensors mounted on the surface of the structure
- Transient response recorded for $5 W/in^2$ and $7.5 W/in^2$ heating

Preliminary Results – Thermal Response – AS4 fiber

Upcoming tests –

Thermal response with coolant at -20°C

Heat flow = 25.85 W Convection Coefficient = 3000 $[W/m^2K]$

Summary and Conclusions

- 1. The hybrid structures with integrated services offer the potential to reduce manufacturing time, cost, and to improve thermal performance.
 - Reduces the number of thermal interfaces
 - Provides engineered thermal paths through microstructures printed with highly thermally conductive fibers
 - Offers the potential to remove metallic liners used in traditional designs
 - Allows for complex non-planar designs
- 2. The heat transfer and structural analyses showed the potential to meet the thermal and structural requirements of support structures
- 3. The prototype demonstrated the feasibility of manufacturing support structures with integrated cooling

Future Work

- 1. Conduct experimental validation on prototype v2
 - Structural integrity of structure under cooling's line pressure with scale up potential
 - Integrity of custom developed non-metallic cooling line connections
 - Thermal performance at sub-zero coolant temperatures
 - Verify simulation predictions for temperature fields in representative conditions
- 2. Apply technology to full size support structure
 - Potential for modular designs
 - High thermal conductivity fibers to improve thermal response

Acknowledgments

Award No.: DE-SC0022341

Thank You!