

MPGD as tracker for EIC

Souray Tarafdar

Vanderbilt University

On behalf of

EIC-eRD108 MPGD consortium

EIC-eRD108 MPGD consortium

The eRD108 Consortium

Project ID: eRD108

Project Name: Development of EIC ePIC MPGD Trackers.

Brookhaven National Laboratory (BNL): Craig Woody CEA Saclay: Francesco Bossù, Maxence Vandenbroucke

Florida Institute of Technology (FIT): Marcus Hohlmann

Istituto Nazionale di Fisica Nucleare (INFN Roma Tor Vergata): Annalisa D'Angelo

University of Virginia (UVa): Huong Nguyen, Nilanga Liyanage

Temple University (TU): Matt Posik, Bernd Surrow

Thomas Jefferson National Accelerator Facility (JLab): Kondo Gnanvo

Vanderbilt University (VU): Sourav Tarafdar

Project Members:

BNL: B. Azmoun, A. Kiselev, M. Purschke, C. Woody

CEA Saclay: F. Bossù, A. Francisco, M. Vandenbroucke

FIT: M. Hohlmann, P. Iapozzuto

INFN: A. D'Angelo, A. Fantini, B. Benkel

JLab: K. Gnanvo

TU: M. Posik, B. Surrow

UVa: H. Nguyen, N. Liyanage

VU: S. Tarafdar, V. Greene, J. Velkovska

Contact Person: Kondo Gnanvo; kagnanvo@jlab.org

MPGD R&D program for EIC

☐ Goals of MPGD R&D in EIC

- Provide low mass, low channel count tracking detector.
- Address the issue of deterioration of spatial resolution on track angle and EXB effect.

■ MPGD for ePIC detector in EIC

- o Inner barrel : Low mass large size cylindrical detector based on μ Megas technology .
- Outer barrel: Large size, low channel count planar detector based on μRWELL technology to provide additional space point for pattern recognition and to aid DIRC for PID.
- End caps: Disc shaped low channel count based on μRWELL technology to compliment Si hits for pattern recognition along with background rejection due to better timing resolution compared to Si MAPS tracker.

R&D on cylindrical Micromegas tracker

Motivation

 Build a full (no acceptance gaps) light-weight modular Micromegas barrel tracker to complement the silicon vertex detector

CLAS12 MM Technology (data taking since 2017)

- Compact cylindrical tracker in a B=5T solenoid, total active area ~4m²
- Light cylindrical tiles (~0.4% X0 per layer)
- 1D readout per tile (either phi or z coord)

Upgrades to fit the EIC needs:

- Simpler construction:
 - about one module size bent at different radii
 - overlap tiles for no acceptance gaps
- 2D readout
 - Resolutions $50 100 \mu m$, on both directions with low channel counts

Objectives

- Optimization of the 2D readout for low number of channels on small prototypes
- CAD design of the full-scale prototype

R&D on cylindrical Micromegas tracker

R&D 2D readout

- Several small prototypes ~12x12 cm²
- Multi stack for easy combination of different options:
 - AK: Amplification Kapton
 - Vary the resistivity, the shape, ...
 - RK: Readout Kapton
 - Different strip pitch (1, 1.5, 2 mm)
 - ASACUSA pattern
- Assembly in house
 - Pressing
 - 3D printed mechanics

Testing

- 55Fe Cosmic rays test bench in Saclay
- Beam test in 2023 in MAMI facility using 880 MeV electron beam.

Cylindrical μ-RWELL prototype © Brookhaven National Laboratory

- Each half of prototype were based on capacitive sharing principle with U-V strips readout pattern
 - One half straight capacitive sharing U-V pattern by Jlab
 - Other half 2D zigzag U-V pattern by BNL

Ref: K. Gnanvo et al., NIM A, 1047 (2023) 167782

Design with only foils in the active area. Mechanical support structure was developed by FIT

Length = 40 cm, diameter = 26 cm

Cylindrical µ-RWELL prototype

☐ June 2023 Fermilab Test beam

- Prototype was installed on rotational mount
- 120 GeV proton beam with the motivation to study spatial resolution along with efficiency and stability of detector.

☐ Unable to collect data

- Use of substantial beam time to address HV stability issue.
- FNAL shut down due to safety/security issue elsewhere onsite.
- Intending to test the prototype at the earliest test beam opportunity at Fermilab test beam facility.

Cylindrical µRWELL in 2023 Fermilab Test Beam Facility

Thin Gap MPGD tracker for EIC

☐ Current challenges with MPGD trackers

- Deterioration of spatial resolution with track angle.
- Minimization of E x B effect inside magnetic field.

☐ Steps for addressing the above issues

- Reduce drift gap to circumvent dependence of spatial resolution on track angle.
- Use various gas mixtures to optimize the detector performance in terms of stability and efficiency.

Parametrization from ref: EPJ Web of Conferences 174, 06005 (2018) MPGD 2015

11/8/23 CPAD Worskhop-2023 8

Thin Gap MPGD tracker for EIC

- Recently (June 2023) concluded Fermilab test beam.
- 10 prototypes from Jlab, UVA and VU
 - ✓ Jlab : Hybrid GEM+ μ RWELL with capacitive sharing X-Y strip (0.8 mm pitch) R/O board and multiple drift gap (0.5-1 mm).
 - ✓ UVA: Triple GEM with X-Y strip (0.4 mm pitch) R/O with multiple drift gaps (1-3.0 mm) and cathode based on copper-Kapton foil or copper wire mesh.
 - \checkmark VU : Hybrid GEM + μ RWELL and GEM + μ Megas with 2D zigzag (1.6 mm pitch) R/O board with 1 mm drift gap.
- Rotation angle from 0 degree to +/- 45 degrees .
- 2 trackers upstream and 2 trackers downstream on a fixed separate stand.
- Data taken using both ArCO₂ (80:20) and KrCO₂(80:20) gas mixtures at different track angles.

Prototypes on rotating frame

Thin Gap MPGD tracker for EIC

Preliminary results from ongoing analysis of June 2023 Fermilab test beam data

Jlab prototype

Residuals in X-plane vs. track angle (θ)

UVA prototype

VU prototype

11/8/23

Double-sided Thin-Gap MPGD tracker for EIC-FY23

Double-sided thin-gap GEM-μRWELL hybrid

- Double amplification with hybrid GEM-µRWELL is the most promising approach for thin-gap MPGD
- With double-sided, we recover full detector efficiency
- Operation with Argon based gas mixture
 - Affordability and availability than Xe / Kr
 - Improved timing resolution (~ 2 ns) for 0.5 mm gap
- Large-area, low-mass and compact detector modules
 - Outer tracker layer / disc of EIC central tracker
 - Large acceptance muon chambers
 - High performance trackers in high-η and FF regions

Double sided Thin Gap MPGD tracker for EIC-FY23

- Development of low mass, low channel count, double sided thin-gap 30 cm x 30 cm active area GEM-μRWELL hybrid trackers.
- ☐ Collaborative effort from multiple Institutions.
 - Design of two capacitive sharing R/O with different pattern (X-Y and UV): Jlab and VU
 - Design of honeycomb support structure and GEM foil: UVA
 - Design of frame structure for GEM and drift foil stretching allowing to adjust foil tension during assembly of detector: FIT
 - Final assembly at UVA: FIT, Jlab, TU, UVA, VU, YU

Conclusions

- Substantial R&D is in progress related to design of mechanical structure of large size cylindrical μ -RWELL and planar μ -RWELL .
- Promising R&D results from cylindrical large size Micromegas and awaiting results from 2023 test beam.
- Promising preliminary result from June 2023 Fermilab test beam for thin gap hybrid (**GEM** + μ -**RWELL**) and thin gap triple GEM detector showing effect of track angle on spatial resolution
 can be mitigated by reducing drift gap of detector (improvement in spatial resolution by a
 factor of 3 as compared to 3 mm drift gap detector).
- Approved FY23 generic R&D funding for double sided thin gap MPGD tracker will mitigate using expensive heavier gas (Xe/Kr) along with providing tracklet information.
- Future R&D plans on large size thin gap MPGD tracker will provide answers for detector stability (both mechanical and High Voltage).