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Initial comments

• Very broad topic!
• Varied (and growing) technical approaches

• Growing list of applications

• “Pair breaking”
• Refers to detection schemes where signal power is dissipated at the key 

sensing element

• Contrast to sensing schemes that coherently amplify, upconvert, mix, etc… 
prior to power dissipation



Outline

• Brief overview of HEP science drivers

• Breakdown by broad classes of technologies
• TES

• MKIDs

• Junction-based devices (qubits, QCD, etc…)

• S"N”SPDs



Science drivers



Cosmological Surveys





MM-WAVE COSMOLOGY
▪ CMB imaging at higher 

frequencies & resolution
– New CMB scattering (kSZ, 

Rayleigh)
– Requires 10x increase in 

densities typical for CMB 
experiment

▪ Mm-wave spectroscopy for 
Line Intensity Mapping
– 3D survey of large volume 

universe
– Requires >100x current 

densities for CMB 
experiment
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Dark Matter



Dark Matter

Convert to a “non-dark” excitation (e.g. 
photon) w/ frequency corresponding to 
DM mass. Detect these excitations.



Dark Matter

Scatter off target material. 
Recoil spectrum rises toward 
lower energies. Measure 
events and this recoil 
spectrum.

Excitations

𝛘,𝜈
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Critical HEP science
• Largest science drivers currently from Cosmic Frontier

• Detectors for future large cosmological surveys (longer wavelengths)

• Dark Matter
• Low mass wave and particle candidates

• Signals from these science experiments are below the cut-off of 
Si/semiconductor gaps

• Broader HEP applications already being explored
• Low energy neutrinos via CEvNS

• Initial investigations of response to high energy particles



Technology overview



Transition Edge Sensors (TES)
▪ Sense temperature with weak thermal link

▪ Voltage-bias establishes negative feedback
– linearizes response, increase bandwidth
– suppresses readout noise

▪ Signal current measured by low-impedance 
low-noise SQUID amplifiers

– SQUID-based multiplexing enables 
operation of large arrays

▪ Sensitivity dominated by thermal fluctuation 
noise

– Well understood theory of noise and 
operation

– At low temperatures scales as Tn, n~3-5

∆T

∆R

R vs T 
of an Ir/Pt 

TES 
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Microwave Kinetic Inductance Detectors (MKIDs)
▪ Superconducting thin films

– Kinetic inductance from Cooper pairs
– Dissipation from quasiparticles

▪ Cooper pair vs quasiparticle distribution depends 
on coupled energy

▪ Measurable shift in resonant properties

▪ Intrinsically multiplexed.



Superconducting Nanowire Single Photon Detectors
• Time-resolved single 

photon counting from UV to 
mid-IR

• Truly digital detection 
mechanism – reduced drift 
and zero read noise

• World-leading detector 
performance

• Operating temperature 1-4 
K in most cases
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Superconducting Qubits as Microwave Photon Detectors
• Superconducting qubits are 

“artificial atoms” which 
obey the same 
Jaynes-Cummings 
Hamiltonian as natural 
atoms

• The presence of a single 
microwave photon can 
switch the qubit state, 
which can be probed later 
using a dispersive readout

• Work is currently ongoing 
to couple superconducting 
qubits to high-Q microwave 
cavities 

FNAL

Kjaergaard et al (2021)



Superconducting Qubits as Quasiparticle Detectors
• The single cooper-pair box (charge qubit) is not often used for 

quantum computing because of its extreme sensitivity to 
non-equilibrium quasiparticles

• This bug becomes a feature when using the SCB as a 
quasiparticle detector

• This “quantum capacitance detector” is single-photon sensitive 
down to 1.5 THz (200 µm, 6.2 meV)

• Large arrays have been demonstrated (21x21) with efficient 
optical coupling via mesh absorbers and microlens arrays

• Transmon versions are also under investigation at SLAC

Echternach et al, Nature Astronomy (2018) Fink et al, arXiv (2023)



Pair-breaking Detector Applications in HEP
SNSPD
• Low-noise Time-resolved single photon counting 

from 0.1 – 29 µm

• Photon detection for wave-like dark matter

• Readout of GaAs and LHe scintillator targets for 
particle-like dark matter

• NP and collider applications

TES
• Millimeter-wave measurements of cosmic 

microwave background

• Low-threshold phonon/bolometric detection for 
dark matter and neutrinos (CEvNS, NLDBD)

• Energy-resolving/number-counting optical 
detection

MKID
• Far-infrared optical detectors, multiplexed to large arrays

• Phonon detection, multiplexed to large channel count for dark 
matter

• Cosmic surveys via sub-mm imaging and mm-wave LIM

• Energy-resolving/number-counting optical detection

Qubit-based Technologies
• Single-photon detection for axion detection at 

microwave frequencies

• Terahertz single photon counting for axion 
detection (Quantum Capacitance Detector)

Different pair-breaking detectors have 
complementary strengths and weaknesses



Provocative Questions
• Are there technologies we are not representing in this taxonomy?

• Can the four detector types on the previous slide form four RDC work 
packages?

• What are the strengths/weaknesses of different collaboration models?

○ Project/experiment driven: typically includes integrated systems, but a 
narrow range of technologies

○ Broader technology collaborations(?): share ideas across various 
technologies, address common issues, does this adequately address 
gaps/integration? Sufficiently develop a path to full experiment?

• What facilities for materials and processing are critical for exploring and 
realizing new detector technologies?


