
An Open Source General Purpose DMA Engine
For DAQ Systems

Ryan Herbst For SLAC TID Instrumentation

November 9, 2023

Contents

2

● Key Features

● Firmware Details
○ Write Engine (inbound)
○ Read Engine (outbound)
○ Descriptor Controller

■ Write transactions
■ Read Transaction
■ Buffer Group Support

● Kernel Driver Details
○ Receive Processing
○ Transmit Processing
○ Core operation with support for IRQ and poll modes

● Conclusion & To Do List

Key Features

3

Linux Kernel
aes-stream-drivers

Linux Kernel
GPU Drivers

Direct to GPU DMA
support in open source
DMA Engine & Driver

● Supports multiple hardware lanes
○ Supports interleaved AXI-Stream traffic (tDEST) on each

hardware lane
○ Per tID back pressure support

● Supports Zynq ACP interface for automatic cache line processing
○ Common API for Zynq based and server based applications

● Configurable cache modes
○ Coherent (no caching)
○ Stream (cache with pre-post dma flush
○ Zynq ACP mode (hardware managed caching)

● Supports both interrupt and polling mode operation

● Supports user space memory mapping of DMA buffers
○ Minimizes memory to memory copies

● Supports multiple buffer receive and transmit to/from user space
to reduce user to kernel space overhead

● Supports larger frame receive across multiplied DMA buffers

● Supports both high bandwidth and high buffer rate applications

● Open source firmware and kernel driver

Overview

4

DMA Write 0

DMA Read 0

AxiStream 0

DMA Write 1

DMA Read 1

AxiStream 1

DMA Write n

DMA Read n

AxiStream n

● Up to 16 “streams” supported by a single descriptor engine
● Each Stream requires a dedicated AXI interface to back end interface (PCIE or Zynq)

DMA Desc

Desc Mux

Desc Mux

Desc Mux

Axi Read/Write
Channel 0

Axi Read/Write
Channel 1

Axi Read/Write
Channel n

DMA Descriptor uses write interface
which matches DMA data channel to
ensure ordering
MUX interleaves traffic

AxiLite Master

DMA Write Engine

5

● Designed to work with or without DMA Desc block
○ Useful for ring buffer controllers or direct to accelerator (GPU) DMA transactions

● WriteDMA engine can support up to 256 interleaved frames
○ Identified by tDEST
○ Interleave must occur on a full width boundary of the AxiStream interface
○ Sideband memory is used to keep track of the write buffer address and receive count for each tDEST

● Transaction burst size is set at compile time
● Each new frame on a unique tDest results in a descriptor request to the external controller

○ Contains the tID and tDest field
● Descriptor response contains the following:

○ Buffer address
○ Max frame size
○ Meta enable flag and meta address
○ Continue enable flag
○ Drop enable flag
○ Unique buffer ID

● All transactions aligned to 4K boundaries
Per Dest

State Memory
(256 entries)

State Machine

AXI Write
Master

Incoming
Frame Processor

DMA Desc
or other controller

(external)

Incoming
AxiStream Data

Axi Write
Interface

DMA Write Engine

6

Per Dest
State Memory
(256 entries)

State Machine

AXI Write
Master

DMA Desc
or other controller

(external)

Axi Write
Interface

● Drop enable flag results in incoming frame being discarded
○ As a result of global or per tDEST/tID configuration

● Continue enable flag determines if a buffer overflow results in an error or if the remaining data is simply continued in another buffer
○ Allows very large frames beyond a fixed buffer size to be supported

● Meta enable flag is for including received frame information at a specified “meta” address
○ Includes received size, first and last “user” fields, continue flag and error flags in a 64-bit word
○ Typically used for special applications such as DMA writes directly to a GPU or other accelerator

● Completed frames are handed back to controller with appropriate meta information
○ Buffer ID
○ First and last “user” fields
○ Frame size
○ Frame tDest
○ Frame tID
○ Frame continue flag
○ Frame error result field

● Result field can be one of:
○ Non zero write AXI transaction result “0xx”
○ Transaction timeout “011”
○ Overflow Flag “100”

Incoming
Frame Processor

Incoming
AxiStream Data

DMA Read Engine

7

● Designed to work with or without DMA Desc block
○ Useful for ring buffer controllers

● Read engine supports a single frame at a time
● Transaction is initiated by request from external controller

○ Buffer ID
○ Read Address
○ Read size
○ tDest value
○ tId value
○ First and last “user” fields

● All transactions aligned to 4K boundaries
● DMA engine will read ahead a compile time configured number of bytes to ensure read pipeline remains full
● DMA engine will respond to external AXI stream backpressure

State Machine

AXI Read
Master

DMA Desc
or other controller

(external)

Outbound
AxiStream Data

Axi Read
Interface

Outbound
Frame Generator

Descriptor Controller

8

Config / Status
Registers

State Machine

AXI Write
Master

Axi Write
Interface

Write Buffer
Free List FIFO

Read Buffer
Request FIFO

AxiLite Bus

IRQ
Count Tracker

● Coordinates DMA transactions for up to 16 read/write lanes
● Configuration Values

○ Enable
○ InterruptEnable
○ ContinueEnable
○ DropEnable
○ Write Ring Buffer Address
○ Read Ring Buffer Address
○ MaxFrameSize
○ IntHoldOff
○ BufferGroupThreshold[7:0]

DMA Write 0-15

DMA Read 0-15

BufferGroupPause[7:0]

Descriptor Controller Operation For Write Data

9

State Machine

AXI Write
Master

Axi Write
Interface

Write Buffer
Free List FIFO

AxiLite Bus

IRQ
Count Tracker

● Each write engine will request a DMA buffer when it requires one
○ Typically occurs when a new frame is received with a unique

tDEST number
● When the write is complete the write engine will return the buffer to

the controller with associated meta-data
● The Descriptor Controller state machine will form a 128-bit word which

contains the buffer and meta data information
○ This 128-bit word is then DMA’d to the next location in a

memory resident ring buffer
○ Bit 127 serves as a “valid” bit for the entry

● Each buffer receive requires the following transactions:
○ 1 32-bit write to disable IRQ (within interrupt handler)
○ 2 32-bit writes to return buffer to free list (address + ID)
○ 1 32-bit write to ack and enable interrupts

● Each irq call can result in multiple buffer transfers
○ IRQ request count tracks number of transaction to manage
○ Driver disables interrupt and handles multiple read and write

buffer returns
○ Ack/Enable write include enable flag and number of buffers which

were serviced

● No register read transactions involved in inbound DMA!

Entry 0

Entry 1

Entry 2

Entry n

Memory Resident
Ring Buffer

Descriptor Controller Operation For Read Data

10

State Machine

AXI Write
Master

Axi Write
Interface

Read Buffer
Request FIFO

AxiLite Bus

IRQ
Count Tracker

● A read transaction is started when the driver posts a reset request to the
“Read Buffer Request FIFO”

○ 128 bit write (4 x 32 bits)
● Read request is then passed to the associated read DMA engine
● When the read is complete the read engine will return the buffer to the

controller with associated meta-data
● The Descriptor Controller state machine will form a 128-bit word which

contains the buffer and meta data information
○ This 128-bit word is then DMA’d to the next location in a memory

resident ring buffer
○ Bit 127 serves as a “valid” bit for the entry

● Each read transmit requires the following transactions:
○ 4 x 32-bit write to generate read request
○ On buffer return:

■ 1 32-bit write to disable IRQ (within interrupt handler)
■ 1 32-bit write to ack and enable interrupts

● No register read transactions involved in outbound DMA! Entry 0

Entry 1

Entry 2

Entry n

Memory Resident
Ring Buffer

Buffer Group Thresholds & Pause Signals

11

State Machine

Buffer Group
Threshold[7:0]

AxiLite Bus

Buffer Group
Decrement[7:0]

● A single buffer free list is shared among all of the separate DMA write controllers
○ Can result in buffer starvation if some channels are generated more traffic than

others
○ User level software slow downs on some channels may result in buffer free list

starvation
● Buffer Groups provide a mechanism to balance out buffer usage from various sources

depending on their AxiStream tID field
○ The lower three bits of the tID field define which buffer group the traffic is

associated with
○ Buffer groups can be independent of the write engine or the tDEST field of the

incoming frames
● The buffer group logic keeps track of the number of outstanding buffers that are

associated with each buffer group
○ The associated buffer group counter is incremented each time a buffer is allocated

for a given buffer group
○ The counter is decremented when the buffer is returned to the free list from the

driver software
○ The associated BufferGroupPause signal is asserted when the number of

outstanding buffers for a group exceeds the configured threshold
○ External logic can then pause the incoming frames for a particular buffer group

BufferGroupPause[7:0]

Buffer Group
Counters[7:0]

DMA Kernel Driver - Receive Processing (read calls)

12

Kernel
Processing

Routine
(Kernel Task)

Client 0 Destination
Registration List

Client 0 Receive
Queue

Client 1 Destination
Registration List

Client 1 Receive
Queue

Client n Destination
Registration List

Client n Receive
Queue

User
Buffer
Return

Routine

User
Buffer
Access

Routine

Entry 0

Entry 1

Entry 2

Entry n

Memory Resident
Ring Buffer

Hardware
Write Buffer

Free List FIFO
Software

Receive Buffer
Free List FIFO

User Space
Applications

DMA Kernel Driver - Receive Processing (read calls)

13

Client 0 Destination
Registration List

Client 0 Receive
Queue

Client 1 Destination
Registration List

Client 1 Receive
Queue

Client n Destination
Registration List

Client n Receive
Queue

User
Buffer
Access

Routine

User Space
Applications

● When a user space application opens the file descriptor associated the
following operations occur:

○ The user space application registers for the
destination/channel combinations it wishes to receive data
from

○ An associated software driver queue is created for the user
space application

○ dmaSetMask call is used to register for receive channel and
destination

■ Each channel/dest can only be registered once

● Optionally the user space application may memory map the kernel
buffers into user space

○ The user application then tracks a list which associates each
“buffer index” but a virtual memory address in user space

○ dmaMapDma call is used

● Possible user space receive calls:
○ dmaRead

■ Receive a single frame with copy to user space
○ dmaReadIndex

■ Receive a single frame using user space mapped buffer
○ dmaReadBulkIndex

■ Receive one or more frames using user space mapped
buffers

DMA Kernel Driver - Receive Processing (read calls)

14

User
Buffer
Return

Routine

Hardware
Write Buffer

Free List FIFO
Software

Receive Buffer
Free List FIFO

User Space
Applications

● When user space mapped buffers are utilized the user application owns the buffer until it is returned
○ dmaRetIndex

■ Return a single buffer via index
○ dmaRetIndexes

■ Return multiple buffers via index

● User space buffers may also be passed back to dmaWriteIndex call, useful for receiving data,
multipulating contents and then transmitting modified frame.

○ Buffer is then used in outbound data transmit and then returned to receive free list when outbound
transmit is complete

● Free list for receive buffers is split between a software FIFO and the hardware FIFO.
○ This allows more receive buffers to be allocated than there is space in the hardware based free list.
○ The kernel task is responsible for moving buffers from the software free list to the hardware free list

DMA Kernel Driver - Transmit Processing (write calls)

15

Kernel
Processing

Routine
(Kernel Task)

User
Buffer
Write

Routine

User
Buffer

Request
Routine

Entry 0

Entry 1

Entry 2

Entry n

Memory Resident
Ring Buffer

Software
Transmit Buffer
Free List FIFO

User Space
Applications

Software
Receive Buffer
Free List FIFO

Read Buffer
Request FIFO

Software
Transmit Frame

Queue

DMA Kernel Driver - Transmit Processing (write calls)

16

Kernel
Processing

Routine
(Kernel Task)

User
Buffer

Request
Routine

Entry 0

Entry 1

Entry 2

Entry n

Memory Resident
Ring Buffer

Software
Transmit Buffer
Free List FIFO

User Space
Applications

Software
Receive Buffer
Free List FIFO

● When a user space application opens the file descriptor associated the following operations occur:
○ The user space application registers for the destination/channel combinations it wishes to receive data from

● Optionally the user space application may memory map the kernel buffers into user space
○ The user application then tracks a list which associates each “buffer index” but a virtual memory address in user space
○ dmaMapDma call is used

● When memory mapped kernel buffers are used the user space application must first request a buffer to be allocated:
○ dmaGetIndex

■ Request a buffer be allocated for outbound data transmit (write call)

● When using standard “copy from user space” write calls a buffer is internally allocated for copy within the kernel driver

DMA Kernel Driver - Transmit Processing (write calls)

17

Kernel
Processing

Routine
(Kernel Task)

User
Buffer
Write

Routine

User Space
Applications

Read Buffer
Request FIFO

Software
Transmit Frame

Queue

● When the user space application is ready to transmit data, it will perform one of the following calls:
○ dmaWrite

■ Transmit a single frame with copy from user space
○ dmaWriteIndex

■ Transmit a single frame using user space mapped buffer
○ dmaWriteVector

■ Transmit one or more frames using copy from user space, passing an iovec structure
○ dmaWriteIndexVector

■ Transmit one or more frames using user space mapped buffers, passing an index array

● The kernel driver will then inserted the requested frame into a software resident transmit queue
○ The kernel task will then deliver the buffer information to hardware

DMA Kernel Driver - Kernel Processing Routine

18

Kernel
Processing

Routine
(Kernel Task)

Entry 0

Entry 1

Entry 2

Entry n

Memory Resident
Ring Buffer (s)

Software
Transmit Buffer
Free List FIFO

Read Buffer
Request FIFO

Software
Transmit Frame

Queue

Hardware
Write Buffer

Free List FIFO

Software
Receive Buffer
Free List FIFO

IRQ
Count Tracker

IRQ
Routine

Software
Poll

● The kernel processing routine is responsible for the following
functions

○ Monitor inbound receive memory ring buffer
○ Move inbound buffer to appropriate user space receive

queue
○ Monitor return transmit memory ring buffer
○ Move buffers to software receive free list
○ Move buffers from software receive free list to hardware

free list
○ Move buffers from software transmit queue to hardware

read buffer request FIFO

● Kernel processing routine is normally triggered by hardware
interrupt

○ Kernel task is then scheduled
○ When inbound data is received and entry is added to

receive ring buffer
○ When outbound data transmit is complete and entry is

added to transmit return ring buffer
○ A periodic trigger from hardware to ensure housekeeping

● Kernel processing routine can also be run in a poll mode with
persistent kernel task running

○ When interrupts are not wanted by real time systems

Client Receive
Queues

DMA Engine / Driver Performance

19

● Demonstrate up to 112 Gb/s for large frames (PCIe GEN3 x 16, 1MB frames)
● Demonstrate > 1MHz frame rate for small frame (<128B) without frame batching

Conclusion

20

● The SLAC open source DMA engine and associated driver has been a workhorse for LCLS2 DAQ along with multiple HEP experiments
○ ZYNQ based data processing (LSST, HPS)
○ LDMX PCIE express receiver
○ NEXO PCIE express receiver and processor

● We have been able to maintain a consistent firmware and software API across multiple PCIE express hardware boards
○ Consistent API for ZYNQ and PCI-Express based boards

● Support for high bandwidth as well as high even rate transactions

● Support for polling and interrupt mode operation

● To Do List:
○ Support user space driver operation for single consumer real time applications

■ Wanted for D3D fusion reactor real time environment

● Firmware and associated driver are open source
○ https://github.com/slaclab/surf
○ https://github.com/slaclab/aes-stream-drivers

https://github.com/slaclab/surf
https://github.com/slaclab/aes-stream-drivers

