
SLAC CPAD RDC5
HLS In A DAQ Environment

A Tale of 2 Experiments

SLAC TID & FPD

7 Nov 2023

Outline
● The Tools; HLS, C++ + Metaprogramming/Templates

○ How these facilitate the FPGA DAQ implementations

● nEXO and the HLS/FPGA compression code

● Mathusla and the HLS/FPGA triggering code

● Takeaways

2

The Tools: FPGAs, HLS & C++

● Why FPGAs

○ High throughput

○ Low Latency

○ Deterministic & Controllable throughput and latency

● Why HLS

○ Makes fairly complex processing at the ‘edge’ possible

■ Can do things that would be impractical in a hardware language like VHDL or Verilog

● Why C++

○ Familiar

○ Templates/Metaprogramming are a good fit with FPGA’s strengths

3

HLS - Brief Overview
● Many talks comparing performance of HLS to VHDL/Verilog generated code

● While important, misses other important points

○ HLS allows one to target problems that would be too complex for hardware languages

○ Fast turn-around times allow exploration of alternative ideas, what-if’ing

○ Simple not possible in hardware languages

● More about can you do it at all than can it be written more performant

4

HLS + C++ Templates/Metaprogramming - The Good
● C++ Templates/Metaprogramming play into the strengths of FPGAs

● Two advantages

○ Templates/Metaprogramming allows more to be done at compile time

● The more that can be statically specified at compile rather than execution time, the better

○ The abstraction that these bring allows fairly generic code

● Combined, these make flexible and efficient frameworks possible

○ Can specify not only flexible array dimensions and loop sizes, but also

○ Even algorithmic selections based on compile time knowledge

○ Can query and use what the compiler knows

● But, isn’t there always…

5

HLS + C++ Templates/Metaprogramming - The Bad

● While C++ syntax is familiar, but an FPGA is not a serial CPU

○ The compute model is very different, hence

● Must code to the strengths of the FPGA, think like an FPGA

○ The algorithmic code and structure is very different

● The code will look alien to a CPU programmer

● HLS compiler has a more difficult job because of a bigger playing field of parameters

○ Typical CPU compiler is concerned with optimizing performance and perhaps memory

○ HLS compiler must consider

■ Performance

■ Resource Usage of BRAMs/LUTs/FFs/DSPs and tradeoffs between these

■ Timing constraints & capabilities of a host of different FPGAs

○ Tradeoffs are nuanced and complicated

■ Compiler cannot make all the decisions, needs some user hand-holding

6

HLS + C++ Templates/Metaprogramming - The Ugly

● HLS compiler is not like the reliable & familiar gcc

○ Quirky and sometimes unruly

● The generated code can be fragile

○ A small change can result in large changes in resources/performance etc.

○ New releases can sometimes dramatically change the resultant code

● At times, feels like fighting the built-in optimizations

○ Sometimes the programmer does know best - case example is local vs global optimization

● The error reporting is often obscure to frustratingly misleading

○ Involved/intricate templates can produce error messages of 1000s of characters

7

nExo - A Neutrinoless Double Beta Decay Experiment
● More sensitive follow-on to EXO-200

● Will be installed at SNOLAB

● TPC with

○ 3840 Charge Channels

○ 7680 Photon Channels

○ Both digitizing 12 bits @ 2MHz

● Will concentrate on the charge channels

8

nEXO Data Compression
● The Challenge - Physics Data Rate vs Calibration Data Rate

○ Physics rate is low (~couple HZ), no problem

■ With drift times of ~1.5 msec, 12 Mbit ADCs @ 2MHz * 3840 Channels = ~140Mb/event

○ Calibration is continuous, 92Gb/sec → big problem

● Calibration data must be continuously streamed to a SSD for 2 hours

○ Requires a data volume reduction of 3.5 - 4.0 to meet bandwidth and reasonable storage sizes

● Solution: Compress the data

■ Possible since the data is mostly pedestals

■ Noise is low ⇒ Low entropy ⇒ Highly compressible

9

nExo Compression
● Compression is more than the compression factor, desirable features

○ High throughput

○ Capped & predictable worst case performance

○ Reasonable resource usage

○ Lossless

● Easy to verify, no arguing about what might be lost

● Enables offline removal of common mode noise (side benefit)

● nEXO will use Arithmetic Probability Encoding (APE) on FPGA vs EXO-200’s Huffman on CPU

10

nEXO Compression - APE vs Huffman
Huffman +’s / -’s

● - Difficult to build encoding table

○ Non-FPGA friendly sort

● + Easy encoder
○ Simple lookup and bit-stuffer

● - Inefficient/unstable at low entropy

○ Best when probabilities = powers of 2

APE +’s / -’s

● + Easy to build encoding table

○ Simple histogram of the distribution

● - Encoder is non-trivial

○ Next slide

● + Achieves entropy limited compression

● + Takes advantage of what FPGAs do best

■ Wacky bit manipulation

11

nEXO FPGA APE Compression
● Initial code base was developed for another TPC based experiment

○ Using C++ metaprogramming/templates makes it easy to adapt to nEXO

● Two problems with the textbook implementations

○ Involves an integer division in the inner encoding loop

■ Solved by carefully rescaling the histogram to a binary power, division → shift

○ Encoding loop outputs one bit/FPGA clock cycle, neither predictable nor performant

■ Found a method to do the encoding in 1 symbol/FPGA clock cycle

■ Made possible by the ability to try lots of different ideas before found the solution

12

nEXO Compression - What is compressed?
● The differences of subsequent ADCs are compressed

○ Avoids knowing the pedestals

● Only the pedestals are compressed

○ Have picked to compress on those +/- 3 (a 3-bit value)

○ On EXO-200, almost all the non-signal differences were contained in this range

○ nEXO advertised to have similar noise, typically achieved 4-6 compression

● nEXO will combine successive differences to make a 6-bit value to be compressed

○ Slightly better compression since this is a joint probability and can remove any correlations

○ More important, now do 2 values/clock cycle

● Values outside this range are placed in a lookaside list

○ Number of bits is determined by the largest value in this list, i.e. if 80 is largest value, encode all in 7 bits

○ Because of the shaping times, differences of even these values are contained to smaller than 12 bits

13

nEXO Compression - Macro Architecture
● Encoding is on a channel-by-channel basis

○ Prevents poorly performing channels from inflating the entropy distribution of other channels

○ Side Benefit: Allows some flexibility when decoding,

● If only wish to look at selected channels

● With random access to the channels, can decode channels in parallel

● Code is arranged in a number of independent compression engines each encoding a number of channels

○ Input rate of 2MHz and an FPGA clock of 200MHz, can encode 100 symbols/cycle = 200 ADCs/cycle

○ Picking 128 ADCs => 3840 channels/128 = 30 encoding engines

■ Gives a cushion to encode any lookaside list + other small non-deterministic but predictable worst cases

○ Engines all run in parallel

■ HLS makes configuring and realizing this fairly easy

14

Mathusla - Detector Description
● Goal is to detect an Long Lived Particle from CMS IP

● In a 100m x 100m pit

○ Pit is 60m above & 68 m downstream of CMS IP

● Populate by a 10 x 10 grid of 9m x 9m towers

○ Each tower has 6 trigger layers, 3x, 3y

○ Layers consist of 3.5 cm x (4x2.45) m bars

○ Readout is by SIPMs at each end

■ 1 dimension measured by bar number

■ 1 dimension measured by time difference of SIPMs

■ Hit = Coincidence with a window of twice the time length

15

Mathusla - Triggering
● Goal is to deliver a trigger to CMS if an LLP is detected

○ Trigger must be delivered within 9.5 usec (‘size’ of CMS front-end buffers and external trigger requirements)

○ Fixed latencies (travel time, data aggregation, transmission time back to CMS) leaves only 2.5 usecs

● Two pieces, track-finding and vertexing

○ Track-finding is independently done for each 3 x 3 group of towers, called a Trigger Unit

■ Involves 100 FPGAs in the central module of each Trigger Unit

■ Only upward going tracks are considered

● Timing distinguishes upward-going from downward-going

○ Vertexing

■ Aggregates all the found tracks into a central FPGA to locate a potential decay vertex

■ Will not talk about this

16

Mathusla - Track Finding Basics
● Allocated 2.0 usecs for track finding

○ @ 200 MHz FPGA clock, means 400 cycles

○ Must take advantage of massive parallelism

● Explored many different approaches

○ Lookup tables

○ Hough transforms

● But all these involve either a memory bottleneck or something that kills massive parallelism

○ Settled on the ultra simple taking pairs of hits, projecting to other layers, looking for coincidences

○ By limiting the number of hits to 10 per layer, leads to a permutation loop of 100, which can be unrolled

○ The projections to the other 4 layers can also be done in parallel

○ All arithmetic is done with arbitrary precision integers (no floating point)

○ Coincidences are done by a simple AND into a bit mask representing the hits in the projected layer

○ There are 3 such engines (seed layers 0,4 1,5 2,3) to allow tracks with any 4/6 layers

17

Mathusla - Triggering, Results & Conclusions
● Only the first coincidence stage has been coded and synthesized, but still not tested

● This stage is taking ~250 cycles of the available 400 cycles

○ Based on experience (hope) the remaining steps (duplication elimination, track parameters, packaging) can be

done in 150 cycles

● Resource usage is reasonable, leaving enough logic for the remaining steps

● Without HLS/C++ and templates/metaprogramming even this simple track-finding in an FPGA would have been very

hard to impossible

18

Takeaways
● HLS is almost necessary to

○ Take advantage of the very large FPGAs now available …and…

○ The more complex computing projects these large FPGAs allow

● C++ and Templates/Metaprogramming are a good fit for FPGAs

○ The more that is known at compile-time the better

● HLS is not like coding for a CPU

○ Some due to it is still an evolving technology, it has gotten much better through the years

○ Some due to the inescapable complexity of an FPGA, it isn’t a simple clocked CPU

● C++ + Templates/Metaprogramming has its own problems

○ Not an easy to master

● BOTTOM LINE: This takes patience, perseverance, and a thick-skin, either you are

○ An Optimist - You will be rewarded

○ A Fatalist - TINA (There Is No Alternative)

19

