

Photon-counting CCDs for Future Spectroscopic Surveys

Kenneth Lin^{1,2}, Julien Guy², Armin Karcher², Stephen Holland²

1. University of California, Berkeley

2. Lawrence Berkeley National Laboratory

11/08/2023

RDC2: Photodetectors, CPAD 2023 @ SLAC

CCDs for cosmological physics

Long legacy in astronomy with excellent linearity, uniformity, quantum efficiency

What's next for spectroscopic surveys?

- Upgrade to Dark Energy Spectroscopic Instrument (DESI)

- Mapping 0 < z < 6: Stage-V spectroscopy

Readout noise

- Dominates in low-signal, lowbackground regime
- Dispersed light from faint sources have low SNR/pixel

Readout rate

- Read time overhead between exposures impacts survey efficiency and cost
- Capability for probing transient targets, follow-ups with complementary facilities

Sub-electron noise with Skipper CCDs

channel stop channel stop channel stop

Sub-electron noise with Skipper CCDs

Readout time challenge with Skipper CCDs

$$\sigma_N = \frac{\sigma_1}{\sqrt{N}}$$

Noise proportional to inverse square root of number of samples *N* ("skips")

Solutions being explored:

- Single sample noise reduction
- Region of interest selection
- Frame-transfer

This work: Parallelized readout structure with Multi-Amplifier Sensing CCD

Multi-Amplifier Sensing (MAS) CCD

$$\sigma_N = \frac{\sigma_1}{\sqrt{N}\sqrt{M}}$$

Noise proportional to inverse square root of number of samples *N* and number of amplifiers *M*

Solutions being explored:

- Single sample noise reduction
- Region of interest selection
- Frame-transfer

This work: Parallelized readout structure with Multi-Amplifier Sensing CCD

Multi-Amplifier Sensing (MAS) Architecture

- Design at Lawrence Berkeley National Laboratory (Steve Holland)
- Developed as part of DOE quantum information science initiative and an outgrowth of Skipper CCD
- Fabrication at Teledyne DALSA Semiconductor and LBNL MicroSystems Laboratory (back-illumination)

MAS-CCD testing at LBNL

Туре	p-channel on high-resistivity n-type substrate
Format	1024 x 512
Pixel size	15 µm
Pitch	15 µm
Thickness	650 µm
Illumination	Frontside
Operating temperature	~140-170 K
Fabrication	Teledyne DALSA / LBNL
Readout	DESI Front-end Electronics

Read noise performance – 4 channels

Full well

- Synergy with astrophysics community to maximize full well capacity + low-signal capabilities
- Reduce gain ~ 0.4 ADU/e- for ADC dynamic range
- Pixel full well ~ 89,000 electrons
- Low-signal nonlinearity needs to be understood

Charge transfer efficiency

⁵⁵Fe Kα 5.9 keV peak X-ray stacking plot <u>.</u> 2000 X-ray Energy [1000 X-ray Energy [.. Enerav [e-] Column Number 99.998% serial CTE Errors dominated by fit

First light for 16-ch with "Hydra"

Read noise performance – 16 channels

First results: 1.55 electrons rms/pixel

Now optimizing voltages and timing!

MAS-CCD for astrophysics

- Identified as a candidate detector for DESI-II, Spec-5 survey, ~10⁸ extragalactic redshifts
- Pilot of Skipper CCDs for cosmology on CTIO SOAR integral field spectrograph early 2024 [arXiv:2311.00813]

MAS-CCD for astrophysics

Earth's reflectance spectrum model

B. Rauscher (NASA)

Candidate for next NASA flagship mission as endorsed by *Astro 2020 Decadal Survey*:

- Passive cooling: no requirement for cryocooler
- p-channel CCD radiation tolerance
- Excellent QE extending into near-IR for key biosignature markers in exoplanet atmospheres

Future MAS-CCD development

- Goal: 4k x 4k with $\sigma_M \lesssim$ 1e-/pixel at < 15 µs/pixel
- Planned and under development
 - 4 corner readout structure
 - Supported by Heising-Simons Foundation (PI Alex Drlica-Wagner)
 - Large-format active area with 64-channel readout electronics Supported by LBNL LDRD
 - Fast readout electronics for massive multiplexing Supported by DOE/Fermilab & LBNL LDRD

511x512

pixels

Skipper 4-corner readout

Figure from Fernández Moroni (2011)

HEISING-SIMONS FOUNDATION

511x512

pixels

Summary & outlook

- Results for 4-channel tests are extremely promising
 - Promising sub-electron readout noise sensor for future spectroscopic surveys, astronomical instrumentation, space telescopes
- Optimization: reducing noise per amplifier with Hydra (16-ch) readout system
- Another complementary effort at Fermilab
 - Optical characterization of thinned (250 µm), back-illuminated, AR-coated devices
 - Testing the MIDNAASIC readout solution
 - Package development
- Progress underway for compact 4-corner MAS CCD layout with 4k x 4k format at LBNL
- Planning for future radiation tolerance testing
- See talk tomorrow by Blas Irigoyen (Session RDC1+2+7) for more on our joint efforts

Extra slides

MIDNA as a scalable readout solution

- ASIC readout chip for Skipper CCDs based on TSMC 65 nm CMOS process
- Dimensions: 2 mm x 1 mm
- Operational under cryogenic conditions
- 4 channels each with: low-noise preamp, DC restorer, dual-slope integrator

Quantum efficiency of Astro Skipper

MAS CCD vs. EM-CCD

- Multiplication gain increases all signal levels cannot tell between electrons generated from photon detection and clock-induced charge (spurious charge)
- Magnitude of multiplication gain highly sensitive to temperature (Tutt et al. 2011)
- Energy resolution degradation from stochastic nature of multiplication gain

Tutt et al. (2011)