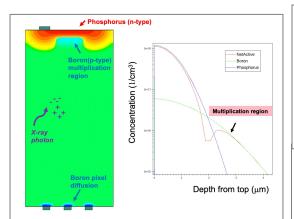
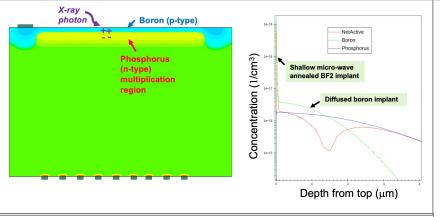
New Results on Thin Entrance Window LGADs

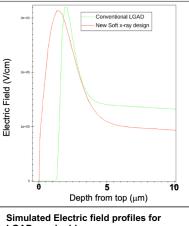

Julie D. Segal, Christopher J. Kenney, Ozhan Koybasi, Angela Kok, Marco Povoli

- LGADs are increasing deployed for HEP applications for improved signalto-noise and temporal resolution compared to PIN diodes
- Lack if thin entrance window is a limiting factor for some applications, such as detection of the following:
 - UV light from noble liquid scintillation
 - Low energy electrons in reaction microscopes
 - Ion products from nuclear fusion
 - Soft x-rays for heliophysics

New Shallow-Entrance Window LGAD Concept

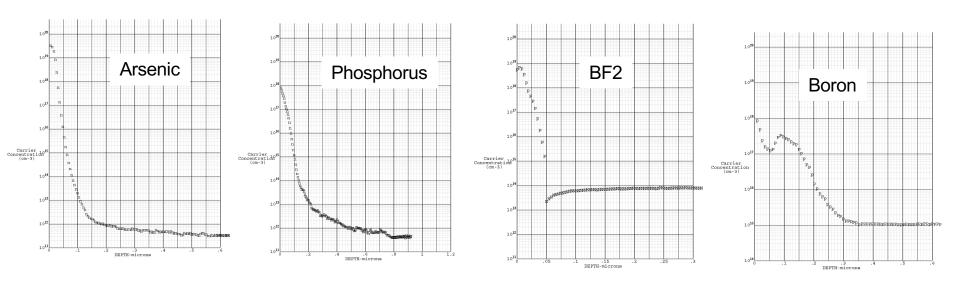


Conventional LGAD Structure (crosssection, not to scale)


Not compatible with shallow entrance window

Thin-entrance window LGAD Structure

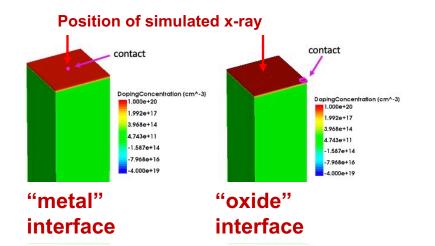
- Polarity of dopants is reversed so that electrons drift toward gain region (electron ionization coefficient much higher than for holes)
- Boron profile created by two separate implant steps
 - (1) Conventional diffused profile
 - (2) Shallow surface implant activated with micro-wave anneal
- Under bias, the diffused boron profile is completely depleted, resulting in electric field extending to silicon surface

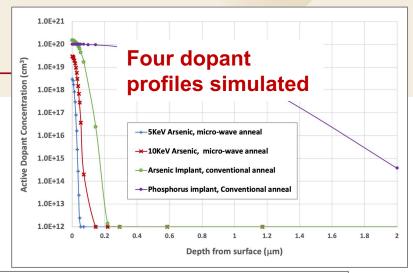


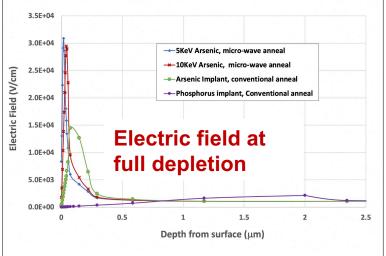
LGADs under bias

J. Segal and C. Kenney, "New Thin-Entrance Window LGAD for Soft X-ray Detection at LCLS-II", 2020 IEEE Nuclear Science Symposium

- Shallow entrance window is an important challenge for realizing sensors for soft x-ray low energy electrons, low energy ions, and UV light
- Microwave annealed (MWA) entrance window process for fully depleted high resistivity sensors was first proposed in 2018
- Enables dopant activation without high temperature
 - Activates dopant without driving profile deeper → create shallow entrance window
 - No damage to existing structures → we can postprocess the backside of foundry processed planar or CMOS sensors
- Fast and cost effective

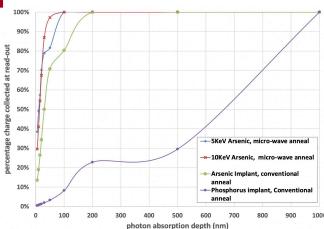


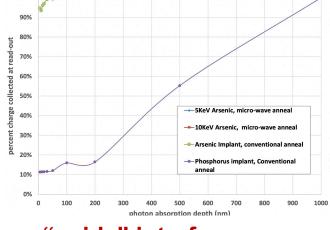



- Spreading resistance profiles (SRP) on implanted test wafers show dopant activation after MWA, both n-type and p-type dopants
- Arsenic and BF2 result in the shallowest profiles

TCAD Simulations of Entrance Window (Simple Diode)

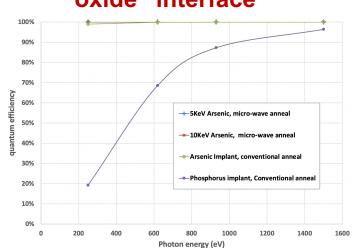
- Dopant profile from MWA compared to conventional anneal
- Electric field present near the surface
- High vs. low surface recombination velocity were compared
- Simulated photon absorption at varying depth





TCAD Simulation Results

Percentage charge read-out vs. photon absorption depth



"metal" interface

100% 90% 80% 70% 60% → 5KeV Arsenic, micro-wave anneal 50% -- 10KeV As, micro-wave anneal 40% Arsenic Implant, conventional anneal 30% Phosphorus implant, Conventional anneal 20% 10% 0% 200 1600 Photon energy (eV)

"oxide" interface

QE vs. photon energy

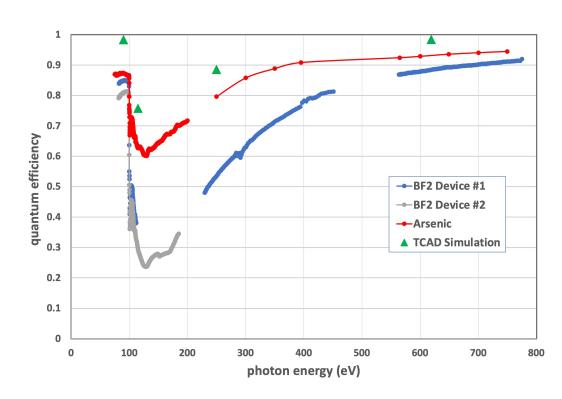
TCAD Simulations: Summary

- Surface recombination is important for shallow entrance windows
- Electric field profile is important
- Electric field depends on dopant profile steepness as well as depth

https://www.frontiersin.org/articles/10.3389/fphy.2021.618390/full

Measured Quantum Efficiency vs. TCAD Simulation

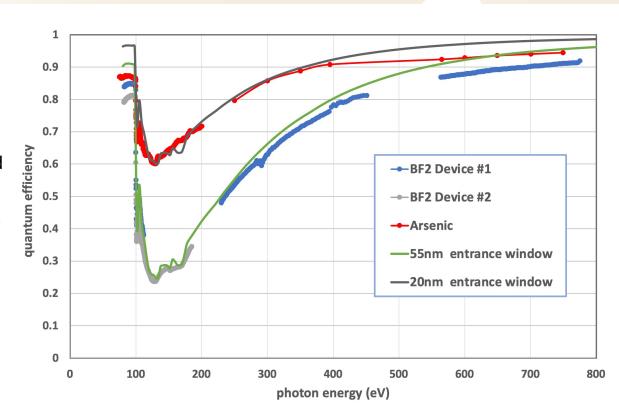
SLAC


Quantum Efficiency measured at ALS Calibrations and Standards Beamline by E. Gullikson

Why is there the discrepancy

- Between measurement and TCAD simulation?
- Between BF2 and Arsenic?

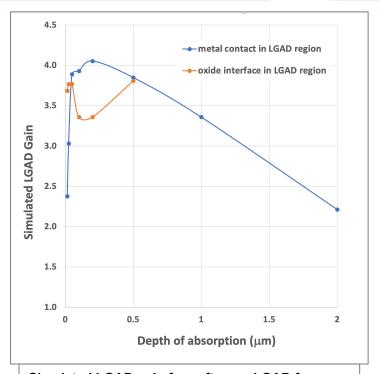
Possible explanations:


- Surface roughness, which is not in model
- Other process variation affecting surface recombination velocity
- TCAD model limitations near the interface

Measured Quantum Efficiency fit to Filter Transmission Model

QE measurements compared to simple "insensitive region" window model

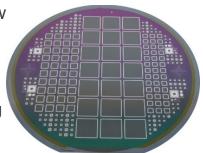
- Simple model assumes no charge is collected from photons absorbed in window region
- Arsenic window roughly equivalent to 20nm insensitive region
- BF2 window roughly equivalent to 55nm insensitive region

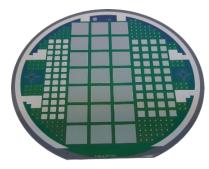


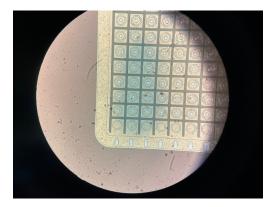
Filter model from henke.lbl.gov

Simulation of Shallow Entrance window LGAD

SLAC


- Similar to previous work on simple diodes, compare "metal" contact to "oxide" contact
 - For LGAD, 2D simulation run instead of 3D simulation
- Result: Similar dependence on interface properties




Simulated LGAD gain for soft x-ray LGAD for photons absorption from 15nm to $2\mu m$ from surface.

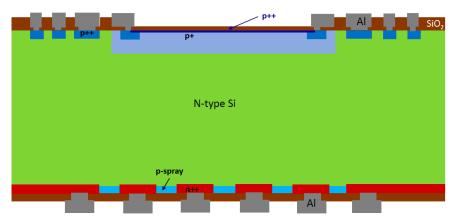
Shallow-Entrance Window LGAD Development

- We partnered with SINTEF to implement the new shallow entrance window LGAD, wafers are now complete and preliminary testing complete
- Wafer layout includes
 - 100um pitch "proto-type" size arrays for bump-bonding to SLAC ASICs
 - Single "pixels" for bench test, with and without gain layer
- Multiple implant splits, every wafer is unique
- Based on diode measurements with various LED's, we estimate the gain for shallow absorption on the best wafer to be >= 7
- Bump processing underway in preparation for bumpbonding proto-type arrays to Tixel ASIC *, capable of sub 100nS timing resolution

^{*} B. Markovic et al, "Design and Characterization of the tPix Prototype: a Spatial and Time Resolving Front-end ASIC for Electron and Ion Spectroscopy Experiments at LCLS", 2016 IEEE NSS/MIC

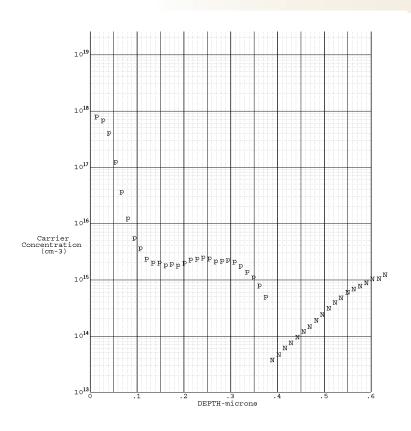
Device cross sections: Single diodes with and without gain layer on all wafers

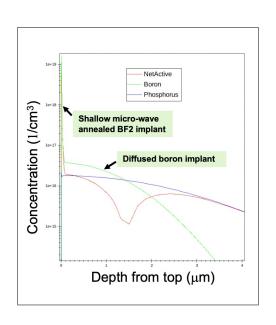
Device structure (with gain layer)


P++ Al SiO₂

P+ n+

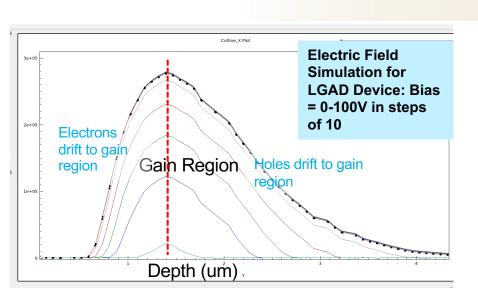
N-type Si


p-spray

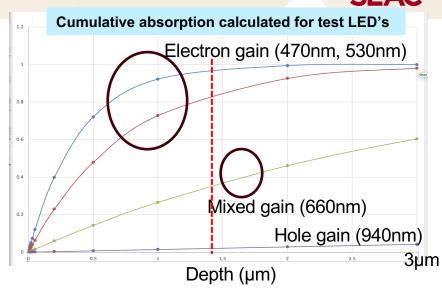

Device structure (without gain layer)

Spreading Resistance Profile on LGAD Gain Region




"Best" Shallow Entrance Window LGAD Wafer

Measured IV curves


- Wafer level bench test
- On single diodes
- With and without gain layer
- With LEDs illumination at 470nm, 530nm, 660nm, and 940nm

Understanding Gain Measurements for Different Wavelengths, verification of gain for shallow absorption

If radiation is absorbed at <1.4um from the surface, gain will be due to electrons. For >1.4um, gain will be due to holes.

	Measured	
condition	Gain	carriers
no light	1.4	mostly holes
microscope light	3.0	mixed?
470nm	6.9	electrons
530nm	4.8	more electrons
660nm	3.3	more holes
940nm	1.4	holes

- Promising results seen on first process development run of new shallow entrance window LGAD, gain = 7.0 for best wafer
 - Wafer-level bench test results shown today
 - Single pixel with and without gain layer
 - LED illumination at 4 different wavelengths to characterize gain vs. depth
- Prototype size pixel array LGAD sensor bump-bonded to fast ASIC in preparation
- Future runs planned for optimization
 - Improved gain
 - Refinement of entrance window process