

Low Tc Thin Film Superconducting detectors

Clarence Chang High Energy Physics Division Argonne National Lab

Astronomy & Astrophysics University of Chicago

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. SLAC Nov 7-10, 2023

New physics via Rare event searches

ENERGY Argument of Energy Steerstory is a U.S. Department of Energy Steerstory managed by UChicago Argument, ULC

2

Argonne 合

Transition Edge Sensor (TES)

- Thermal detector
 - Versatile coupling
 - Well understood theory of performance
- Voltage-bias establishes negative feedback
 - linearizes response,
 - increase bandwidth
 - suppresses readout noise
- Noise comes from thermal fluctuations
- Multiplexable
- Sensitivity and threshold improves with lower Tc
 - Target Tc~20-60 mK

TES for rare event searches

U.S. Department of U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Ricochet

- Measure low energy reactor neutrino spectra via Coherent Elastic Neutrino-Nucleus Scattering
- Thermal detector measuring heat with a TES thermometer
 - Large particle and radiation collection volume

Thermal Detector Using AlMn TES

Collaborating with UMass, MIT and Northwestern

https://doi.org/10.1016/j.nima.2023.168765

Thermal modeling

Transition Edge Sensor Chip Design of Modular CEvNS Detector for the Ricochet Experiment, Ricochet Collaboration, R. Chen et al. DOI: 10.1007/s10909-022-02927-1

- Thermal model
 - Separate into multiple isothermal heat capacities
 - Connect blocks with therma conductances
- Measure through temporal/frequency response to energy injection
 - Bias modulation
 - Pulse shape

MCMC analysis

0.010

BENERGY Arponne National Laberstory is a U.S. Department of Energy Meterstory U.S. Department of Energy Meterstory

9

Averaged Pulse

Simulation

Directions for optimization

Conductance from Gold Pad 2 to TES is much smaller than expectation. This could point to an issue with fab and/or design.

Thermal link through the TES chip and glue is significantly larger than we intended in the device we tested.

10

Improving thermal performance

- "Split TES"
 - Same electrical circuit
 - Thermal transport across TES reduced by 2x
- "Zebra stripes"
 - Provide additional thermal conductance across TES

Thermal modeling Study & measure TES chip alone

- Complex impedance ("transfer function" measurement)
- 2-block model (TES and Au pad)

New approaches to tuning Tc Tc control

- AIMn Tc is sensitive to heat treatment
 - Film Tc changes at "low" temperatures
- For this design, can reheat individual chips and further tune Tc

Dark Matter

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Dark Matter including SPICE/HeRALD (TESSERACT) Photons

LHe

- Athermal detector measuring quasiparticles from AI photon/phonon collection fins with TES sensors
 - Large photon/phonon collection area
- Searches for low mass particle dark matter using various targets

ENERGY

Device modeling UC Berkeley

•
$$Z(\omega) = R_{sh} + R_p + j\omega L + Z_{TES}(\omega)$$

•
$$Z_{TES}(\omega) = R_0(1+\beta) + \frac{R_0\mathcal{L}}{1-\mathcal{L}} \frac{2+\beta}{1+\frac{j\omega\tau_0}{1-\mathcal{L}}}$$

•
$$\frac{\partial I}{\partial P}(\omega) = \left[I_0\left(1 - \frac{1}{\mathcal{L}}\right)e\left(1 + \frac{j\omega\tau_0}{1 - \mathcal{L}}\right)Z(\omega)\right]^{-1}$$

•
$$S_P(\omega) = S_I(\omega) \left| \frac{\partial I}{\partial P}(\omega) \right|^{-2}$$

•
$$\sigma_E = \left[\int_0^\infty \frac{d\omega}{2\pi} \frac{4}{S_P(\omega)} \right]^{-1/2} = 76 \text{ meV}$$

 10^{-9}

> Argonne NATIONAL LABORATOR

16

QP diffusion measurement UMass

17

QP propagation along AI fin into TES

Preliminary

Backgrounds Stress & Low Energy Excess

- Measurements with "external" sources of stress exhibit excess low-E background events
 - Low-E background reduces when stressors are removed

Near zero stress Ir bilayers

Can tune stress by adjusting working pressure for Ir film dep

Improving Tc control

Pursue very thin films to realize very small volumes

Co-sputtering Ir w/ Pt

Moving beyond low Tc TES

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

AIMn MKIDs

- Studied AIMn resonators
 - Reduced Tc
 - Qi vs T/Tc is not universal, suggests superconductivity not just rescaled gap
- Sub-gap DOS?

Summary

- For most superconducting detectors, lower Tc enables lower noise/threshold
- Research and development of new materials and corresponding detector designs for low Tc detectors enables new science.
- New approaches to low Tc materials
 - Post-fab reheating of AIMn
 - Co-sputtered Ir-Pt w/ tunable stress
- Evolving thermal (bolometric) designs
- Validating athermal (qp/phonon) designs
- Exploring low Tc for non-TES detectors
 - Need a better understanding of the underlying physics of materials properties

25

