

Karthik Ramanathan

Caltech: S. Golwala, J. Parker JPL: P. Echternach, A. Beyer Weizmann: S. Rosenblum, L. Joshi

CPAD2023 RDC8 2023/11/09

Image courtesy of JPL Microdevices Laboratory

Science Overview

Dark Matter $\leftarrow \rightarrow$ Phonon Channel

To probe certain masses of dark matter we need to achieve single phonon sensitivity O(10-100) meV

- + Phonon energies O(meV)
- + Information about interaction position and energy
- + Potentially thousands of phonon interactions
- + No relevant fluctuation background

(thermal phonons suppressed by mK temp.)

- Phonon diffusivity \rightarrow energy split across sensors

Kinetic Inductance Detectors (KIDs)

 Superconductors have an AC inductance due to physical inertia of Cooper pairs → Kinetic Inductance

Design Stage	σ_{pt} 1g Si absorber
Current Technique	10-20 eV (meas.)
Optimized Single KID	5 eV (proj.) - 2023
Quantum Limited Amplifier	1 eV (proj.) - 2023
Improve t _{qp} to 1 ms	0.5 eV (est.) - 2024
Lower T _c material	O(100) meV (est.) 2025+

- + Highly multiplexable, kHz linewidths on GHz readout
- + Fundamentally non-dissipative
- High residual quasiparticle level ~10-1000 um⁻³ of unknown origin, suspected to be readout power generated \rightarrow limits quasiparticle lifetime and worsens sensitivity and resolution.

See KIPM talk by O. Wen RDC8 Wed. 15:00

Transition Edge Sensors (TESs)

 Voltage biased to sit at superconducting transition

- + 30 year history of development with validated noise modelling
- Need low $T_{\!c}\! \rightarrow \! 10$ mK to improve performance -
- challenging materials + deposition/fabrication R&D
- $T_C^{3/2}$ & thermal conductance $\sim T^4$ still valid?
- Parasitic power shielding getting onerous?

TESs demonstrated down to ~300 meV resolution! See R. Romani talk RDC7+8 Thurs 16:00

Qubits

Amundsen, 2019 (CHEP 2018)

Qubits

Huge proliferation of techniques since 80s

What makes these interesting for non-QIS practitioners? Relevant energy scales << eV to few eV

Environmental effects at those energies affect/modify the qubits \rightarrow e.g. radiation detection

4

Cooper-pair Box / Charge Qubit

- Stick Josephson Junction (SIS sandwich) into a circuit with a capacitance and a voltage bias, creates a superconducting *island* that is connected to a bulk reservoir.
- Relevant D.O.F: # of Cooper pairs on the island

$$\hat{H}_{\text{CPB}} = 4E_C \left(\hat{n} - n_g + \frac{P - 1}{4}\right)^2 - E_J \cos \hat{\varphi}.$$

Charging energy (energy to add another Cooper pair to the island): $(2e)^2/2C_g$

Josephson energy

Parity: <u>+</u>1, measure even/odd quasiparticle tunneling events that have traversed the junction

Dimensionless *offset charge*: C_gV_g/2e

Quantum Capacitance Detector

Shaw et al, 2009; Echternach et al. 2017

- Look at Cooper-pair box again, specifically lowest energy level
- Can interpret the curvature as a capacitive term \rightarrow changes every time a quasiparticle tunnels over (i.e. shifts x-axis)
- Lots of potential for astronomical operation at low photon bkg. shot noise

Make a O(GHz) LC resonator and couple this qubit to it – O(MHz) shift from this changing C

Offset Charge Sensitivity (OCS) Serniak et al. PRL, 2019

 $\chi_{i,p} = g^2 \sum_{j \neq i} \frac{2\omega_{ij}^{pp} \left| \langle j, p | \hat{n} | i, p \rangle \right|^2}{(\omega_{ij}^{pp})^2 - \omega_r^2},$

- Stiffen the energy ratios by increasing overall capacitance (e.g. making absorber pads larger) will enter *transmon* regime.
- Won't see capacitance shift anymore but will still see a *dispersive* shift in your resonator with tunneling.

Quantum Parity Detectors

(similar concept to recent SQUAT proposal, see C. Fink RDC8 talk)

Al X Al

Si / Al₂O₃ Substrate

V ~ 100 um³ Parameters same as FIR-QCD

Expected Signal

Tunneling trace of QP events in FIR device

Phonon mediated signal linear with quasiparticle density. Also linear with temperature → There's no calibrated model of these processes, first devices will be needed to constrain tunneling, transport etc.

$$\frac{16E_Jk_BT}{\mathcal{N}\Delta h}n_{qp}\equiv Kn_{qp}$$

Background & Threshold

Don't necessarily need good qubit to be a sensor as long as residual QP induced effects are reduced. Not penalized for having a better qubit.

Threshold and background rate dependent on volume, quiescent QP density etc.

$$\sigma_{\mathcal{B}}^2 \approx \left[\left(K\tau + 16\frac{K^2\tau^2}{V} \right) n_0 \right]$$

1

Phonon OCS

QPD Fabrication Challenges

Requirements much different than Astronomy or QIS needs - need good contact between absorber/traps for quasiparticle transport. QIS devices lay down multiple overlapping layers \rightarrow Needlessly introduces parasitics and increases volume. Workaround with "bandages" or by "junction milling"

Junction Mill Tests

Lots of challenges to explore

Absorber Sizing

- Tunneling rate $\leftarrow \rightarrow$ volume
- Does this match expectation with diffusion sizing?
- Saturation effects
- Improve on K~10 kHz um³?
- 1 → 10000 um³ absorber means R~1 Hz which is not observable

Material Selection

- Move to lower gap material, or introduce QP traps e.g.
 AIMn → Need to demonstrate able to make a junction
- KID experience with low Tc materials like AlMn has been... poor

Offset Charge Drift

- Gate charge drifts on O(10)s
- Currently experiments stabilize drift by using individual bias lines → lots of complexity for many QPDs

Phonon-Film Coupling

- Coupling of energy from substrate to film η ~ 0.1-0.34 from different experiments
- QP breaking film thickness dependent (30-100 nm)
- Phonon absorption lifetime $\tau_{abs} \sim 1ms 1s$?

Readout scheme

- Sweeping gate voltage
- Measurement bandwidth
- Resonator design

Surface Fill Fraction

To completely absorb energy in phonon

 $f_{abs} \cdot N_{surf} \cdot f_{surf} \sim 1$

```
(abs probability x num bounces x surface fill)
```

```
N_{surf} \sim 10^{3-5} f_{abs} \sim 10^{-2} \rightarrow f_{surf} \sim 0.01\% - 10\%
```

Takeaway

- 1. Single phonon sensitivity is a driving design need for lowmass particle dark matter searches
- 2. Quantum Parity schemes are one avenue to achieve very low sensitivity
- 3. QPD demonstrator R&D, exploring factors in tunnel junction design, absorber volume, quasiparticle density etc. is underway
- 4. Descriptive paper coming soon!

Quantum Parity Detectors: a qubit based scheme with meV thresholds for rare-event searches

Karthik Ramanathan,^{1,2,*} John Parker,¹ Lalit M. Joshi,³ Andrew Beyer,⁴ Pierre Echternach,⁴ Serge Rosenblum,³ and Sunil Golwala¹

Thanks! Questions?