Quantum-Enhanced Telescopy for HEP Science

Paul Stankus, BNL CPAD 2023, RDC8 Nov 8, 2023

 $\langle BNL | \hat{a}^{\dagger} | QIST \rangle$

"Keep watching the skies"

HEP Cosmological Frontier invests in observing photons from the sky

- Galaxy position, shape, photometric redshift
 - Tech: Low-noise CCD's Projects: DES, LSST/VRO
- Galaxy precision redshift
 - Tech: Low-noise spectrograph Projects: BOSS, DESI
- Cosmic microwave background, incl polarization
 - Tech: TES Projects: CMB-S4
- HI intensity mapping, including dark ages
 - Tech: RF spectrometers & interferometry Projects: LuSEE Night

"Keep watching the skies"

HEP Cosmological Frontier invests in observing photons from the sky

- Galaxy position, shape, photometric redshift
 - Tech: Low-noise CCD's Projects: DES, LSST/VRO
- Galaxy precision redshift
 - Tech: Low-noise spectrograph Projects: BOSS, DESI
- Cosmic microwave background, incl polarization
 - Tech: TES Projects: CMB-S4
- HI intensity mapping, including dark ages
 - Tech: RF spectrometers & interferometry Projects: LuSEE Night
- Precision *astrometry* of bright stars and binaries
 - Tech: Fast spectrograph, quantum optics Projects: TBD

Idea: Quantum engineering can improve astronomical *interferometry*, both for high-resolution imaging and precision *astrometry*

Astrometry Measurement	Distance Ladder (<i>H</i> ₀ tension)	Dark Energy	Dark Matter	GR Tests	Pre-CMB (relics)
Stellar parallax	\checkmark	\checkmark			
Proper motions			\checkmark		
Binary orbit measure (independent distances)	\checkmark	\checkmark	\checkmark		
Parallax with galaxies	\checkmark	\checkmark			
Microlensing in real time				\checkmark	
Low-frequency (μ Hz) gravitational waves	\checkmark	\checkmark		\checkmark	\checkmark

Entanglement-Assisted Michelson Quantum networks

ی ۳

Longer-Baseline Telescopes Using Quantum Repeaters

Daniel Gottesman* Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Thomas Jennewein[†] Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada

Sarah Croke[‡] Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada (Received 25 October 2011; revised manuscript received 22 May 2012; published 16 August 2012)

Two-source, generalized HBT Arbitrary baselines

Very Large Arrays Higher rates, multipartite states

Vol. 5, 2022 • November 01, 2022 IST
Two-photon amplitude interferometry
for precision astrometry
Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich
https://doi.org/10.21105/astro.2010.09100
Astronemical Instrumentation Astrometry Ouantum Physics Interferometry Interferometric Correlatio

Entanglement-Assisted Michelson Quantum networks

Two-source, generalized HBT Arbitrary baselines

Source 2

Very Large Arrays Higher rates, multipartite states

Subtle but important point: The *entire system,* not just one device or sensor, is a quantum detector for a coherent extended EM quantum field.

Source 1

PRL 109, 070503 (2012) PHYSICAL REVIEW LETTERS

Receiver L

Longer-Baseline Telescopes Using Quantum Repeaters

Daniel Gottesman* Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada week ending 17 AUGUST 2012

 $\label{eq:constraint} Thomas Jennewein^{\dagger}$ Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada

Sarah Croke[‡] Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada (Received 25 October 2011; revised manuscript received 22 May 2012; published 16 August 2012)

Instrumentation and Methods for Astrophysics Vol. 5. 2022 · November 01. 2022 IST **Two-photon amplitude interferometry for precision astrometry** Paul Stankus , Andrei Nomerotski , Anže Slosar , Stephen Vintskevich

on Astrometry Quantum Physics Inteferometry Interferometric Corr

os://doi.org/10.21105/astro.2010.00100

Heralded Single Ground Photon In (W state)

Long-distance quantum coherence

Luantum State

istribution

Quantum Entanglement Network

Dark Matter Wave

Interferometers are sensitive to very small details and differences in stars' positions.

Telescopes (on Earth or in space)

> Production and distribution of custom quantum states enables long-baseline, high-resolution optical interferometry, opening new observations directly relevant to DOE HEP science.

Dark Matter Sensors (e.g. Magnetometers)

Entangled states distributed over quantum networks can link detectors together coherently, improving sensitivity and directional resolution; a leading example is detection of wave-like dark matter.

FIG. 2. Photograph of the LinoSPAD2 sensor edge. The line of pixels is in the centre, oriented horizontally.

Fast spectrometer near the Heisenberg limit with direct measurement of time and frequency for multiple single photons

Jakub Jirsa,^{1,2} Sergei Kulkov,¹ Raphael A. Abrahao,^{3,*} Jesse Crawford,³ Aaron Mueninghoff,⁴ Ermanno Bernasconi,⁵ Claudio Bruschini,⁵ Samuel Burri,⁵ Stephen Vintskevich,⁶ Michal Marcisovsky,¹ Edoardo Charbon,⁵ and Andrei Nomerotski^{3,†} ¹Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague, Czech Republic ²Faculty of Electrical Engineering, Czech Technical University, 166 27 Prague, Czech Republic ³Brookhaven National Laboratory, Upton NY 11973, USA ⁴Stony Brook University, Stony Brook NY 11794, USA ⁵École polytechnique fédérale de Lausanne (EPFL), CH-2002 Neuchâtel, Switzerland ⁶Technology Innovation Institute, Abu Dhabi, United Arab Emirates (Dated: July 6, 2023)

arXiv:2304.11999

Double spectrograph prototype at BNL

Technology needs: Fast Spectrograph

Enabling technology for many quantum-enhanced telescopy approaches Very natural fit for HEP detector expertise

- Array of single-photon sensitive detectors to view a spectrographic spread of a single-mode beam – can be 1D or 2D (Echelle)
- Want reasonable QE (>50%) and good timing (<50ps, better is better)
- Many possibilities, SPAD's, SiPM's, SNSPD's
- Want many channels, ~10³⁻⁵ in parallel \leftrightarrow low cost/channel
- Operational: Portable, durable, etc.

Is this a natural "work package"? or part of one?

Technology needs: Quantum/Optics

New for HEP detector portfolio, but definitely some overlaps with traditional expertise

- Quantum entangled state creation, e.g. parametric down-conversion; higher rates, high brightness, custom lineshapes, etc.
- Photon transport, e.g. stabilizing long fiber runs
- Remote synchronization, ~psec across 10's km
- Futuristic: long-distance quantum networks using repeaters, quantum memory storage, QND detection
- Collection optics, not usually an HEP specialty; but, air shower arrays -> HBT observatories for example

Summary

- Quantum devices can greatly improve optical interferometry; q-astro is a new and growing field independent of HEP
- *Precision astrometry* enabled by improved interferometers can be directly relevant to HEP Cosmic Frontier science
- A distributed array of detectors can act as a quantum sensor, even if individual pieces look like phototdetectors, e.g.
- Immediate technology path ahead, from very concrete HEP expertise to longer-range QIST capabilities

Science question: Are low-frequency

gravitational waves part of the HEP Cosmological Frontier? Should they be?

Stochastic GW background in nHz range has recently been observed (NANOGrav) Observation in μ Hz range are do-able through precision astrometry

Main source is SMBHB mergers, possibly following galaxy major mergers; informs structure formation, cosmology, dark matter; also possibly see pre-CMB relics

LIGO

Interferometry is good

Radio source Cygnus A imaged at 6cm

Center of M87 imaged at 1.3mm

Single Aperture Diffraction Limit

A single detector/pixel point will collect intensity from a range of angles. The limit of this angular range is $\Delta\theta \sim \lambda/d$ after which the wavefront will interfere with itself destructively across the aperture. Therefore any single-aperture telescope cannot resolve features with angular size smaller than λ/d

Idea: Separate apertures over long baselines

Michelson Stellar Interferometer ca.1890

Interference fringe pattern sensitive to features of angular size $\Delta\theta \sim \lambda/B$ Contrast visibility measures Fourier component of source distribution at $k \sim B/\lambda$

Idea: Separate functions of photon capture, photon transport, and photon interference

Pattern of coincidences measured at L and R stations reveals phase difference of sky photon arriving in two places: interferometry

Sky direction

$$\Psi^{\text{Initial}} = \psi_1 \psi_2 = \frac{1}{2} (\hat{a}^{\dagger} + e^{i\delta_1} \hat{e}^{\dagger}) (\hat{b}^{\dagger} + e^{i\delta_2} \hat{f}^{\dagger})$$

Sky photon Ground photon

$$\begin{array}{ccc} \text{Beam} & \hat{a}^{\dagger} \rightarrow (\hat{c}^{\dagger} + \hat{d}^{\dagger})/\sqrt{2} & \hat{b}^{\dagger} \rightarrow (\hat{c}^{\dagger} - \hat{d}^{\dagger})/\sqrt{2} \\ \text{Splitters} & \hat{e}^{\dagger} \rightarrow (\hat{g}^{\dagger} + \hat{h}^{\dagger})/\sqrt{2} & \hat{f}^{\dagger} \rightarrow (\hat{g}^{\dagger} - \hat{h}^{\dagger})/\sqrt{2} \end{array}$$

$$\Psi^{\text{Output}} = (1/4)(\hat{c}^{\dagger}\hat{c}^{\dagger} - \hat{d}^{\dagger}\hat{d}^{\dagger} + e^{i(\delta_{1} + \delta_{2})}(\hat{g}^{\dagger}\hat{g}^{\dagger} - \hat{h}^{\dagger}\hat{h}^{\dagger}) + (e^{i\delta_{1}} + e^{i\delta_{2}})(\hat{c}^{\dagger}\hat{g}^{\dagger} - \hat{d}^{\dagger}\hat{h}^{\dagger}) + (e^{i\delta_{1}} - e^{i\delta_{2}})(\hat{c}^{\dagger}\hat{h}^{\dagger} + \hat{d}^{\dagger}\hat{g}^{\dagger}))$$

$$P(c^{2}) = P(d^{2}) = P(g^{2}) = P(h^{2}) = 1/8$$

$$P(cg) = P(dh) = (1/8)(1 + \cos(\delta_{1} - \delta_{2}))$$

$$P(ch) = P(dg) = (1/8)(1 - \cos(\delta_{1} - \delta_{2}))$$

Quantum Advantage! Each coincidence between *i* and *j* reflects interferometric visibility on baseline $\vec{B}_i - \vec{B}_j$; achieve an *N*-aperture interferometer with only *N* beam combiners, rather than $O(N^2)$ that would be required classically.