Versatility of superconducting Hafnium for transition edge sensor bolometers

CPAD 2023 - SLAC

Kaja M. Rotermund¹, Aritoki Suzuki¹, Daniel Yohannes², Robin Cantor³, John Vivalda² ¹ LBNL, ² SEEQC, ³ STARCryo

TES bolometer parameters

Superconducting Transition R_n $\alpha = \frac{T}{R} \frac{\mathrm{d}R}{\mathrm{d}T}$ Resistance R_{res} T_c Temperature \rightarrow

Typical CMB targets:

• T_c ~ 165 mK

• $\alpha \gtrsim 100$

- Compatible with detector fab
- > Reproducible
- Uniform across wafer
- Does not degrade over time

Example of TES material: Aluminum Manganese

Dale Li et al. (2016)

- Steep transition
- High uniformity across wafer
- Sensitive to fabrication temperature

- Mn dopant coarsely sets T_c
- Film thickness affects T
- Bake temperature fine-tunes T

Hafnium: an attractive alternative

- Single element
- ~1 Ω/□ sheet resistance
 (250 nm film, measured at 1 K)
- Tunable $T_c \sim 130 400 \text{ mK}$
 - Heated sputter deposition
 - Ideal range for CMB experiments

Example Hf detector efforts

Superconducting tunnel junctions: Kraft et al. (1998)

- Photon counting spectrometers for application in astrophysics
 - 100 nm Hf film, T₂ ~ 130 mK

TES calorimeters: Adriana Lita et al. (2009)

- Hf calorimeter: "transition broadened considerably"
 - Hf film as deposited: 30 nm, $T_{a} \sim 195$ mK, $\Delta T \sim 3$ mK, $R_{a} \sim 12 \Omega$
 - TES buried under SiN
 - Final TES T₂ ~ 140 190 mK

MKID: Nicholas Zobrist et al. (2019) & Gregoire Coiffard et al. (2020)

- Successful demonstration of Hf OIR MKID arrays
 - Q_i ~ 77,000
 - $T_c' = 395 \text{ mK}, \Delta T \sim 5 \text{ mK}$ \succ Room temp deposition

Heated sputter deposition

6

TES bolometer fabrication process

- 0) 675 μm Si Wafer + SiN (2.0 μm, low-stress) + SiO₂ (0.45 μm)
- 1) Hf: sputter 247 nm @ 500°C Cl₂ plasma etch, DI termination
- 2) SiN: PECVD 500 nm N2 preclean, CHF₃ + O₂ plasma etch
- 3) Nb: sputter 600 nm @ room temp Cl₂ plasma etch, DI termination
- 4) Pd: 1 µm e-beam evaporation
- 5) DRIE release bolometer
- 6) Stealth dicing

STAR

CRYOELECTRONICS

Designing low R_n

- Unpatterned ~ 250 nm film
 - $R_n \sim 1 \Omega/\Box$ (~ 1 K measurement)
- Reduce R_n via interdigitated design
- Design R_n to range from 1 $\Omega \rightarrow$ 17 m Ω

Prototype wafer

Results - achieving stable T_c , high α , low R_n

- \checkmark Unchanged T_c (~ 5 mK variation across wafer)
- ✓ Smooth & steep transition
- ✓ Low R_n via interdigitated design

Results - achieving stable T_c , high α , low R_n

Low- R_n style (20 m Ω)

Achieving high yield

- Stress in Nb film \rightarrow Hf delamination
- Solution: Al lift off, fabricated full CMB detector stack
- Good superconducting contact & no halos

Delamination around Nb contact

Full CMB detector stack

Good superconducting contact 3.0 2.5 2.0 1.5 1.0 0.5 $\alpha_{0.5Rn} \ge 200$ $T_c^* = 185.4 \pm 0.6 \text{ mK}$

250

Temperature [mK]

0.0

200

*New Hf target, uncalibrated

350

400 12

300

Summary

Hf is an attractive detector material

- T_c is tunable and stable with heated deposition
- α : steep transition with high loop gain
- Interdigitated design effectively reduces R_n
- Successful fabrication of a full CMB detector stack

Thank You.

Abstract

Several current and next generation cosmic microwave background (CMB) polarimetry experiments employ transition edge sensor (TES) bolometers whose operating temperature is ~100 milli-Kelvin, requiring a critical temperature (T_a) around 170 milli-Kelvin. Aluminum Manganese (AlMn) has been successfully used as the superconducting metal by several groups for CMB experiments. However, achieving a repeatable and stable T_c requires careful thermal management that puts bounds on fabrication processes. We studied an alternative superconducting metal – Hafnium (Hf) is an attractive alternative as its bulk T_c is well matched to our needs and can also be deposited as a thin film as demonstrated by the microwave kinetic inductance detector (MKID) community. One critical differentiation between past Hf MKID fabrication processes and our own, is our use of a heated sputter deposition that enables us to finely tune the T_c to our desired target. Furthermore, the T_c remains robust against subsequent exposure to heat as long as the initial deposition temperature is not exceeded. As the deposition temperatures are high (ranging from 300°C - 550°C, depending on the desired T_), there is ample thermal budget for continued fabrication processes while maintaining a stable T_c. Additionally, by using an interdigitated geometry we are able to precisely design the normal resistance of the TES to anywhere between 1 Ohm and 10 milli-Ohm, making these TESs compatible with CMB experiments that use both time-domain as well as frequency-domain and microwave multiplexing readout systems. We present our findings of a Hf based TES bolometer designed for CMB experiments.