Light collection and Simulation in EXCO

Molly Watts Yale University CPAD Workshop | RDC2: Photodetectors November 8, 2023

Image: Symmetry magazine

Neutrinoless double beta decay ($0\nu\beta\beta$)

Finding $0\nu\beta\beta$ implies physics beyond the Standard Model

See-saw mechanism

Light Collection and Simulation in nEXO | Molly Watts

Energy resolution

Light Collection and Simulation in nEXO | Molly Watts

VUV-sensitive SiPMs in nEXO

FBK

2 candidate manufacturers

Fondazione Bruno Kessler (FBK)

Hamamatsu Photonics (HPK)

Hamamatsu

Quad

FBK VUVHD3 Replaces previous generation: FBK VUVHD1

Tested 3 devices (6x6mm²)

G. Gallina, nEXO collaboration. Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO. Eur. Phys. J. C 82, 1125 (2022)

nEXO requirements to meet ≤1.1% energy resolution					
Photon detection efficiency (PDE)	\geq 15% for 175 nm photons				
Dark count rate at -100°C	< 10 Hz/mm ²				
Fluctuations in correlated avalanches (CAF) per pulse in 100μ s at -100°C	< 0.4				
Light Collection and Simulation in nEXO Molly Watts CPAD	2023 7				

Photon detection efficiency (PDE)

Eur. Phys. J. C 82, 1125 (2022)

CPAD 2023

nEX

Light collection efficiency (E):

Correlated avalanche fluctuations (CAF)

RMS error of CA charge per photoelectron (PE)

Mean charge in CA per primary PE

Afterpulsing

Image: C. Piemonte & A. Gola (2019)

Devices meet nEXO requirement at optimal over voltage

G. Gallina, nEXO collaboration. Eur. Phys. J. C 82, 1125 (2022)

nEX®

nEXO energy resolution with candidate SiPMs

Estimated energy resolution as a function of applied over voltage

Energy resolution nEXO requirement ≤1.1%

nEXO goal $\leq 0.8\%$

Devices meet our requirements!

Note: Yet to account for external cross talk. Might produce slightly steeper rise but shouldn't impact reaching goal. Papers from TRIUMF & IHEP out soon!

> Contribution to light channel to total energy resolution neglecting recombination fluctuations

Optical Simulations

Chroma

GPU-accelerated ray tracing package

- Up to 300x faster than Geant4
- Can work with detailed geometry

Light collection efficiency (\mathcal{E}): $\mathcal{E} = PTE * \frac{PDE}{1-R}$

Photon transport efficiency (PTE)

Most detailed light response of nEXO Contains ~1 trillion photons!

nEXO collaboration, 2022 J. Phys. G: Nucl. Part. Phys. 49 015104

Lightmap from nEXO sensitivity paper

Light Collection and Simulation in nEXO | Molly Watts

CPAD 2023

Improving discrimination for Bi-Po tagging

Improving discrimination for Bi-Po tagging

CPAD 2023

Improving discrimination for Bi-Po tagging

 Current sensitivity projection assumes no tagging based on spatial light discrimination

CPAD 2023

Alpha particle tagging above cathode

In the volume, we can reject this background with perfect efficiency by tagging Po-214 α $T_{1/2}^{\alpha} = 160 \ \mu s$

Under cathode, current sensitivity projection assumes NO tagging

Alpha particle tagging below cathode

Topological discrimination with hit patterns

Current work: Exploring clustering algorithm to discriminate between background and signal Future work: Employ Convolutional Neural Network

Light Collection and Simulation in nEXO | Molly Watts

Summary

Light detection

Have devices from two manufacturers that meet nEXO requirements!!

Good agreement amongst multiple institutions

 More measurements than shown today
G. Gallina, nEXO collaboration. Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO. Eur. Phys. J. C 82, 1125 (2022) arXiv:2209.07765

Optical simulations

Provide better background rejections and better modeling for energy resolution

• Ongoing discrimination work to better characterize events

Thank you!! Questions?

International collaboration involving 10 countries, 36 institutions, ~200 collaborators

This material is based upon work supported by the National Science Foundation Graduate Research

Light Collection and Simulation in nEXO - Molly Watts

Multiparameter analysis

nEXO collaboration, 2022 J. Phys. G: Nucl. Part. Phys. 49 015104

Sensitivity and discovery potential

- Projected half-life: 1.35 x 10²⁸ years at 90% confidence level
- Design goal ≤1% energy resolution at Q-value of 2458 keV

nEXO collaboration, 2022 J. Phys. G: Nucl. Part. Phys. 49 015104

Hardware setups SiPM characterization - combined effort of multiple institutions

	TRIUMF	McGill University	Yale University	University of Mas- sachusetts, Amherst	Brookhaven Natio- nal Laboratory [28]	Institute of High Energy Physics
Abbreviation	TR	MG	YALE	UMASS	BNL	IHEP
Temperature Stabilisation	Instec MK2000	Lakeshore 350	custom LabVIEW	custom LabVIEW	CryoCon 24C	CTE-SG12012 -02W
Measurement Temperature	163 K	163 K	163 K	190 K/163 K	163 K	300 K/233 K
SiPM Amplification	MAR6-SM+ OPA695 [<mark>29</mark>]	MAR6-SM+ OPA695 [<mark>29</mark>]	CR-113-R2 SRS SR-560	CR-113-R2 CR-200-100ns	MAR6-SM+ OPA695 [<mark>29</mark>]	custom amplifier [20]
DAQ pulse counting	CAEN DT5730B	Rohde & Schwarz RTO2024	Rohde & Schwarz RTB2004	Teradyne ZTEC ZT4421	MSO64 Tektronix	CAEN DT5751
DAQ I-V	Keithley 6487 Keysight B2985A	Keysight B2987	Keithley 6487	Keithley 6482	-	Keithley 6487
LXe/GXe	No	No	Yes	Yes	No	No
SiPM Noise analysis	Yes	Yes	Yes	Yes	Yes	Yes
SiPM PDE	Yes	No	No	No	No	Yes

G. Gallina, nEXO collaboration. Eur. Phys. J. C 82, 1125 (2022)

Light Collection and Simulation in nEXO | Molly Watts

Dark count rate (DCR)

Geiger mode avalanche in absence of a photon

Requirement met for all devices in the entire range of over voltages!

G. Gallina, nEXO collaboration. Eur. Phys. J. C 82, 1125 (2022)

G. Gallina et al. Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO. Eur. Phys. J. C 82, 1125 (2022)

Light Collection and Simulation in nEXO | Molly Watts

Correlated avalanches (CA) FBK VUVHD3

Grey points are FBK VUVHD1* New VUVHD3 are an improvement!

G. Gallina, nEXO collaboration. Eur. Phys. J. C 82, 1125 (2022)

* A. Jamil et al, IEEE TNS 65 (2018)

Light Collection and Simulation in nEXO | Molly Watts

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0

extra charge produced by CAs [PE]

CPAD 2023

RMS error of CA charge

Correlated avalanches (CA) HPK VUV4s

extra charge produced by CAs [PE]