Light collection and simulation in nEXO

Molly Watts
Yale University
CPAD Workshop | RDC2: Photodetectors
November 8, 2023
Neutrinoless double beta decay (0νββ)
Finding 0νββ implies physics beyond the Standard Model

1. Lepton number violation

2. New class of elementary particles

3. Implications for matter-antimatter asymmetry

4. Insight into neutrino mass

- Leptons & Anti-leptons
- Only leptons

Image: APS/ Alan Stonebraker

See-saw mechanism

Possible new mass giving mechanism

\[(T_{1/2})^{-1} \sim |m_{\beta\beta}|^2 \]

Double beta decay

Neutrinoless double beta decay

Neutrinos are Majorana particles

\[\nu = \bar{\nu} \]
Planned $0\nu\beta\beta$ detector

Builds off success of EXO-200
1st observation of $2\nu\beta\beta$ in ^{136}Xe

Single phase TPC
400 V/cm drift field, \sim1.2 m drift length

5,000 kg of LXe enriched to 90% ^{136}Xe
High Q-value of 2458 keV

Detector size exceeds gamma ray absorption length
Self shielding, Scalability

Scintillation light
- Time stamp of interaction time
- Independent measurement of charge and light is instrumental for energy resolution requirement of $\leq 1.1\%$ and our energy resolution goal of $\leq 0.8\%$

Energy resolution

EXO-200 Th-228 source calibration data

Energy spectra of Th-228 events

Rotated energy resolution is dominated by light collection efficiency

Light collection efficiency (\mathcal{E})

$$\mathcal{E} = PTE \times DAP = PTE \times \frac{PDE}{1-R}$$

Photon detection efficiency

Photon transport efficiency

Device avalanche probability

Reflection at normal incidence in vacuum
Light Collection
Photon detection system

Silicon Photo-Multipliers (SiPMs)
- Individual SiPMs
- Grouped in 6 cm² sub-arrays → readout channels

Tile Modules
- 16 sub-arrays to tile w/ smaller daughterboard & integrated ASIC
- 20 tile modules arrayed to form stave

Staves
- 24 staves surround barrel, behind field shaping rings
- Electroformed copper

Geometry
- Square cylinder
- Decreases the number of reflections before hitting a photodetector

Photocoverage
- 4.6 m²
- 7,680 channels

Light Collection and Simulation in nEXO | Molly Watts

CPAD 2023
VUV-sensitive SiPMs in nEXO

2 candidate manufacturers
Fondazione Bruno Kessler (FBK)
Hamamatsu Photonics (HPK)

Tested 3 devices (6x6mm²)

- FBK VUVHD3
- HPK VUV4-50 Quad
- HPK VUV4-Q-50 Quad

Replaces previous generation: FBK VUVHD1

<table>
<thead>
<tr>
<th>nEXO requirements to meet ≤1.1% energy resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon detection efficiency (PDE)</td>
</tr>
<tr>
<td>Dark count rate at -100°C</td>
</tr>
<tr>
<td>Fluctuations in correlated avalanches (CAF) per pulse in 100μs at -100°C</td>
</tr>
</tbody>
</table>
Photon detection efficiency (PDE)

175 nm PDE as function of over voltage
Requirement: ≥ 15% for ~175 nm photons

Light collection efficiency (ε):
$$\varepsilon = \frac{PTE \cdot PDE}{1 - R}$$

G. Gallina, nEXO collaboration.
Correlated avalanche fluctuations (CAF)

\[CAF = \frac{\sigma_{\Lambda}}{1 + \langle \Lambda \rangle} \]

- RMS error of CA charge per photoelectron (PE)
- Mean charge in CA per primary PE

Devices meet nEXO requirement at optimal over voltage

nEXO energy resolution with candidate SiPMs

Estimated energy resolution as a function of applied over voltage

![Graph showing energy resolution vs over voltage for HPK VUV4-Q-50/VUV4-50, FBK VUVHD3, and nEXO requirement and goal.]

- **Energy resolution**
 - nEXO requirement ≤1.1%
 - nEXO goal ≤0.8%

Devices meet our requirements!

Note: Yet to account for external cross talk. Might produce slightly steeper rise but shouldn’t impact reaching goal.

Papers from TRIUMF & IHEP out soon!

Contribution to light channel to total energy resolution neglecting recombination fluctuations

Optical Simulations
Chroma

GPU-accelerated ray tracing package
- Up to 300x faster than Geant4
- Can work with detailed geometry

Light collection efficiency (ε):
$$\varepsilon = \frac{PDE}{1 - R} \times PTE$$

Photon transport efficiency (PTE)

Most detailed light response of nEXO
Contains ~1 trillion photons!

Lightmap from nEXO sensitivity paper
Improving discrimination for Bi-Po tagging

Backgrounds

Bi-214 is a dominant background with a gamma close to our 2.5 MeV Q-value.

In the volume, we can reject this background with perfect efficiency by tagging Po-214 α.

$$T_{1/2}^\alpha = 160 \mu s$$

Radon 222 decay chain

- Radon 222
- Polonium 218
 - α 3.1 m
- Bismuth 214
 - β 27 m
- Lead 214
- Polonium 214
 - α 160 μs
- Lead 210
Improving discrimination for Bi-Po tagging

Backgrounds

Bi-214 is a dominant background with a gamma close to our 2.5 MeV Q-value

Rn-222 ionized daughters can plate out on cathode

At edges like this, it is more difficult to tag Bi-Po events…
Improving discrimination for Bi-Po tagging

• Current sensitivity projection assumes no tagging based on spatial light discrimination
Alpha particle tagging above cathode

In the volume, we can reject this background with perfect efficiency by tagging Po-214 α

\[T_{1/2}^{\alpha} = 160 \, \mu s \]

Under cathode, current sensitivity projection assumes NO tagging
Alpha particle tagging below cathode

Hit pattern of Po-214 alpha decay below surface of cathode

In the volume, we can reject this background with perfect efficiency by tagging Po-214 α. $T_{1/2}^{\alpha} = 160 \mu s$

Under cathode, current sensitivity projection assumes NO tagging.

We can tag these alphas based on spatial light discrimination!
Topological discrimination with hit patterns

Hit pattern of Bi-214 beta decay above surface of cathode

Current work: Exploring clustering algorithm to discriminate between background and signal

Future work: Employ Convolutional Neural Network
Summary

Light detection
Have devices from two manufacturers that meet nEXO requirements!!

- Good agreement amongst multiple institutions
- More measurements than shown today

arXiv:2209.07765

Optical simulations
Provide better background rejections and better modeling for energy resolution

- Ongoing discrimination work to better characterize events
Thank you!! Questions?

International collaboration involving 10 countries, 36 institutions, ~200 collaborators

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.
Back-up slides
Multiparameter analysis

Energy: Signal like

Standoff:

Topology:

Sensitivity and discovery potential

- Projected half-life: 1.35×10^{28} years at 90% confidence level
- Design goal $\leq 1\%$ energy resolution at Q-value of 2458 keV
Hardware setups
SiPM characterization - combined effort of multiple institutions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>TRIUMF</th>
<th>McGill University</th>
<th>Yale University</th>
<th>University of Massachusetts, Amherst</th>
<th>Brookhaven National Laboratory [28]</th>
<th>Institute of High Energy Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAQ I-V</td>
<td>Keithley 6487 Keysight B2985A</td>
<td>Keysight B2987</td>
<td>Keithley 6487</td>
<td>Keithley 6482</td>
<td>-</td>
<td>Keithley 6487</td>
</tr>
<tr>
<td>LXE/GXE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SiPM Noise analysis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SiPM PDE</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Dark count rate (DCR)
Geiger mode avalanche in absence of a photon

Requirement at 163 K ≤ 10 Hz/mm²

Requirement met for all devices in the entire range of over voltages!

Correlated avalanches (CA)

FBK VUVHD3

Avg extra charge produced by CA \((\Lambda)\) as a function of applied over voltage

\[
CAF = \frac{\sigma_\Lambda}{1 + \langle \Lambda \rangle}
\]

RMS error of CA charge per photoelectron (PE)

Mean charge in CA per primary PE

Grey points are FBK VUVHD1*

New VUVHD3 are an improvement!

Correlated avalanches (CA)

HPK VUV4s

Avg extra charge produced by CA (λ) as a function of applied over voltage

$$CAF = \frac{\sigma_{\lambda}}{1 + \langle \lambda \rangle}$$

RMS error of CA charge per photoelectron (PE)

Mean charge in CA per primary PE

RMS error (σ_{λ}) as function of over voltage

Grey points are older test

HPK VUV4 has almost no correlated avalanches!