An In-Network Event Builder for the Mu2e TDAQ System

<u>Sean Cummings</u>, Hyunsuk Bang, Nishanth Shyamkumar, Michael H L S Wang, James B Kowalkowski, Ryan Rivera, Nik Sultana

Programmable Networking

- Switches and network cards (NICs) can <u>apply programs</u> to <u>each packet</u> while packets are being forwarded.
- It's not just the end-hosts (e.g., clients, servers) that are programmable.
- Various COTS products implement this. For example, in our lab we use Intel/Barefoot Tofino switches and AMD/Xilinx Alveo NICs.

Intel/Barefoot Tofino2

AMD/Xilinx Alveo NIC

In-Network Computing through Programmable Networking

- Enables the <u>rapid implementation</u> of <u>new features</u> in network devices
 - Lower the cost and complexity of new feature development
 - Centralize custom processing in high performance programmable devices
- Provides flexibility in building distributed systems
 - System visibility e.g., telemetry and monitoring.
 - Centralized control e.g., for traffic engineering.
 - Operate at great speeds e.g., 100s of Gbps up to 10s of Tbps.
 - Low latency e.g., can support real-time systems.

Programmable Networking in Data Acquisition (DAQ)

• How DAQ can benefit from Programmable Networking:

- <u>High-performance</u> implementation "if it compiles then it runs at line rate".
- <u>Simplified development and deployment loop</u> e.g., centralized logic, simpler/no synchronization.
- <u>Heterogeneous targets</u> ASICs, FPGAs, microprocessors, etc.

Especially data flow-oriented systems.

- Our project (this talk): Event Builder + Diagnostics on programmable hardware.
 We implemented this using the P4 programming language.
- Results to date: prototype was evaluated (1) in simulation and
 (2) in a physical testbed.

Mu2e Experiment

- Why this experiment? The observation or non-observation of <u>muon-to-electron conversion</u> would represent a very significant result.
 - This experiment could confirm or rule out various theories formulated to account for the shortcomings in our current understanding of sub-atomic particle physics.
- What does it consist of? Various systems that measure and convert signals, including the TDAQ (Trigger & Data Acquisition) subsystem.

Gioiosa, A., Donati, S., Flumerfelt, E., Horton-Smith, G., Morescalchi, L., O'Dell, V., Pedreschi, E., Pezzullo, G., Spinella, F., Uplegger, L., and Rivera, R. A.. Trigger-DAQ and Slow Controls Systems in the Mu2e Experiment. United States: N. p., 2020. Web.

About the Trigger & Data Acquisition (TDAQ) system

- Our prototype is located within this system.
- TDAQ:
 - Used to collect digitized data.
 - Collected data is processed online or offline.
 - Coordinates and monitors data sources.
- In Mu2e it also provides time synchronization mechanism.
- Within the TDAQ, the Event Builder (see diagram) composes fragments of readings from different parts of the detector.

Partial production installation Mu2e DAQ to date

Giolosa, A., Donati, S., Flumerfelt, E., Horton-Smith, G., Morescalchi, L., O'Dell, V., Pedreschi, E., Pezzullo, G., Spinella, F., Uplegger, L., and Rivera, R. A., Trigger-DAQ and Slow Controls Systems in the Mu2e Experiment. United States: N. p., 2020. Web.

Prototype Design

- It implements 2 in-network functions on a single switch:
 - Event Building
 - Error detection
- For Event Building:
 - Programmable load balancing to different back-end servers.
 - In current prototype, using round-robin for phased load distribution among back-end servers.
- For Error Detection:
 - Per-link error tracking is implemented using registers
 - This gives per link granularity on the 7 types of specified errors
 - Registers are provided to enable system operators to quickly detect and respond to errors

Event Header

Event Tag Low four bytes (63-32)				Res(31-24)	Inclusive Sub Event Byte Count(24-0)		
Event Mode (five bytes) (63-24)					Num ROCs (23-16)	Event Tag high two bytes (15-0)	
Reserved (63-32)			Data Source DTC ID (31-24)	EVB Mode (23-16)	DTC MAC DTC M Byte 2 Byte 0 (Part ID) (DTC A (15-8) (7-0)	DTC MAC Byte 0 (DTC Add) (7-0)	
EMTDC (63-56)	Reserved (55-48)	Link 5 Err/stat (47-40)	Link 4 Err/stat (39-32)	Link 3 Err/stat (31-24)	Link 2 Err/stat (23-16)	Link 1 Err/stat (15-8)	Link 0 Err/stat (7-0)

(Advantage of using Programmable Networking: Support for Custom Packet Formats.)

Error detection

Error (7)	Status (6-0)				
	Figure 6 Link Error / Status Register				
tatus bits ir	ndicate non-error status when the Error bit = 0, and error conditions when the Error bit = 1.				
6	Fatal Error				
C.					
5	Reserved				
4	Reserved Reserved				
4 3	Reserved Reserved Packet CRC Error				
4 3 2	Reserved Reserved Packet CRC Error Packet Sequence Number Error				
3 2 1	Reserved Reserved Packet CRC Error Packet Sequence Number Error Reserved				

Stateful registers used to tabulate errors per link

Prototype Topology

- One source traffic node generating high rates of traffic using DPDK (More than Mu2e's current requirements).
- Two destination nodes.
- Packet from source is processed and distributed to destination nodes connected to programmable switch .

Results

- Successful proof of concept for switch based round-robin load balancing
- Successful proof of concept for error detection
- Prototype can detect errors using stateful processing
 - Each link has an array of registers which count different types of errors that can occur on the link

Next steps

- Investigate more context-sensitive load balancing schemes (as a function of the contents of the Mu2e custom header).
- Provide monitoring on various stats:
 - Packet count for source/destination pairs
 - Packet count by detector type
 - Packet count per link
- This information can be used to determine load balancing strategies and identify anomalies at the link layer.

Thank you!

Any questions can be sent to Sean Cummings at: scummings@hawk.iit.edu