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SLAC Neural Network Library (SNL) SNL’s Design Flow
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® Provides specialized set of libraries designed in High-Level

Layers definition

Synthesis (HLS) for deploying ML inferences on FPGAs, !

eFPGAs and ASICs :'
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e At the edge of the data chain, SNL aims to create a high- S

performance, low-latency FPGA implementation for Al o v
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inference engines. 7y [ Packed IP ]4—[ RTL Synthesis ]
® Supports Keras like API for layer definition %
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e Dynamic reloading of weights and biases to avoid re- ST E S Export to C/RTL Co-

synthesis Vivado Simulation
® Supports 10s of thousands of parameters or more \

depending on latency requirements for the inference model
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e Total end to end latency of ~couple of usec to couple of
millisecond.

e Streaming interface between layers.
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FPGAs for Latency Critical Neural Network

In context of neural network inference run ASICs, FPGAs, CPUs, GPUs comes with their own strengths and weaknesses.

CPU offers the greatest
programming flexibility.
Lower compute
throughput.

Limited Parallelism:
CPUs are optimized for
single-threaded or
limited multi-threaded
performance, which is
often not sufficient for
highly parallel workloads
like neural network
inference.
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GPUs

GPU performance is
typically much higher
than a CPU and
improved further
when using a large
batch number.
Processing many
queries in parallel.

FPGAs

In latency critical real-time
systems, it is not always
possible to batch input
data.

This is where FPGAs are
somewhat unique, allowing
neural networks to be
optimized for a single query
Still achieve a high-level
compute resource utilization.
When an ASIC does not
exist, this makes FPGAs ideal
for latency critical neural
network processing.

ASICs

ASICs offer the
highest performance
and lowest cost
Only for targeted
algorithms.

There is no flexibility



On-the-fly Weights & Biases Loading

® SNL implementation is targeting scientific instruments which will continuously adapt to new data and changing
environments
O  High speed training to supports this goal
O  Bias and weight updates in real time
New o7 2
| Data O
Set Ve

Remote Retraining

FPGA based ML inference run
Streaming
Real-time input data 77408 e
experiment OSSN :
T Reload the new weights and biases
without having to resynthesize the
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Buildable Neural Networks and Future Support

Convo 2D 5x5x1
Activation: ReLU

Deep Autoencoders
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Fully Connected style

® Supported Libraries:

o NN Layers:Conv2D,
MaxPooling2D, Average
Pooling, Dense

O Activators: LeakyRelu, Relu,
SoftMax

wesece O Data Types: Fixed point,

Integer, Floating Point

MLPs

SNL is a work in progress library
SNL can provide future support for more libraries for
variety of neural networks layer types.

.
o
O e.g: Support to foundational Transformer Work
Neural Network blocks in

It can also provide Novel weights loading such as rogress
binary or ternary.



Challenges with Pruning

(@)
(@)

Some Al-to-FPGA frameworks take the weights and biases and pruning portions of the network structure to save
resources

Re-synthesis is required for each new training set

in internal interconnect structure

Risk of the FPGA implementation failing due to increase resources usage, timing failures or massive change
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SNL Model Example: Tiny CNN - MNIST

NW Definition and Area Consumption KCU105
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e Parameters =7312
e Latency =1023 cycles
~5.115us
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SNL Model Example: MLP-MNIST

NW Definition and Area Consumption for KCU105

@ Resource Utilization Available Utilization %
: LuT 124740 242400 51.46
: - LUTRAM 24403 112800 21.63
(@) %) O FF 100594 484800 20.75
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(@) (@] ® Output Layer € R™ _
o ° 9 Acthato: SotMax e Latency = 3212 cycles
Q ® ~16.06us
@ .
@ Hidden Layer € R’ Hidden Layer € R*®
z Activator: RelLu Activator: RelLu
v © processStream 2.120E5 -
» © construct_1 - 1.960E5 - - no 92 269
» @ construct 2 5 1.252E4 - = no 76 247
» © construct - 2.515E3 - 3 - no 0 59 229
» [@ processNetwork @ Il Violation = 1.606E4 £ - dataflow 119 25110 29321
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Further Testing with SNL: Power Comparison

Power Measurements for Tiny CNN and MLP SW with NN

W Tiny CNN
- ML

HW no NN

SWno NN

HW with NN

. Measurement Type Power (W
Tiny CNN 1 Excluding NN IP 2.274(5 !
HW Including NN IP 2.5025
Vivado Excluding NN IP 3.289
Vivado Including NN TP 3.967
MLP HW Excluding NN IP 2.2745
HW Including NN IP 2.6545
Vivado Excluding NN 1P 3.294
Vivado Including NN TP 3.719
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We went further and did power comparison.

Table presents the power measurements obtained
from actual KCU105 board for both CNN and MLP
examples.

Observations:

There is a clear difference between power estimated
by Vivado and the actual power measured on HW.
Specifically, Vivado’s power estimate for the Tiny
CNN network is differs by 1.4645W when compared
to the physical hardware measurement.

Similarly, Vivado’s power estimate for the MLP
network differs by 1.0645W.

For the MLP NW consumes the higher power,
because it has a higher no. parameters necessitates
increased memory mapping and more extensive
computation between memory and logic cells,
thereby leading to escalated power usage.



Challenges...

- How can we prune the model without having
resynthesize the entire design?
To target transformer style huge networks on FPGA is
a complex challenging task given the FPGA resource
constraints.
It requires Domain scientists and FPGA designers to
work closely together to optimize design for FPGA
deployment
It also requires a significant modification in
transformer architecture and training processes.
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