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SLAC Neural Network Library (SNL)
Key points:

● Provides specialized set of libraries designed in High-Level 
Synthesis (HLS) for deploying ML inferences on FPGAs, 
eFPGAs and ASICs

● At the edge of the data chain, SNL aims to create a high-
performance, low-latency FPGA implementation for AI 
inference engines.

● Supports Keras like API for layer definition

● Dynamic reloading of weights and biases to avoid re-
synthesis 

● Supports 10s of thousands of parameters or more 
depending on latency requirements for the inference  model

● Total end to end latency of ~couple of usec to couple of 

millisecond.

● Streaming interface between layers.
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FPGAs for Latency Critical Neural Network

In context of neural network inference run ASICs, FPGAs, CPUs, GPUs comes with their own strengths and weaknesses.

● ASICs offer the 
highest performance 
and lowest cost

● Only for targeted 
algorithms.

● There is no flexibility

● CPU offers the greatest 
programming flexibility.

● Lower compute 
throughput.

● Limited Parallelism: 
CPUs are optimized for 
single-threaded or 
limited multi-threaded 
performance, which is 
often not sufficient for 
highly parallel workloads 
like neural network 
inference.

● GPU performance is 
typically much higher 
than a CPU and 
improved further 
when using a large 
batch number.

● Processing many 
queries in parallel.

● In latency critical real-time 

systems, it is not always 

possible to batch input 

data.
● This is where FPGAs are 

somewhat unique, allowing 
neural networks to be 
optimized for a single query

● Still achieve a high-level 
compute resource utilization.

● When an ASIC does not 
exist, this makes FPGAs ideal 
for latency critical neural 
network processing.
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On-the-fly Weights & Biases Loading

● SNL implementation is targeting scientific instruments which will continuously adapt to new data and changing 
environments
○ High speed training to supports this goal
○ Bias and weight updates in real time

FPGA based ML inference run

New 
Data 
Set

Real-time 
experiment

Streaming 
input data

Remote Retraining

Reload the new weights and biases 
without having to resynthesize the 
network 4



Buildable Neural Networks and Future Support

MLPs

● Supported Libraries:
○ NN Layers:Conv2D, 

MaxPooling2D, Average 
Pooling, Dense

○ Activators: LeakyRelu, Relu, 
SoftMax

○ Data Types:  Fixed point, 
Integer, Floating Point

Fully Connected style 
Deep Autoencoders

CNNs/DNNs

● SNL is a work in progress library
● SNL can provide future support for more libraries for 

variety of neural networks layer types.
○ e.g: Support to foundational Transformer 

Neural Network blocks
● It can also provide Novel weights loading such as 

binary or ternary.

Work
in

Progress
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Challenges with Pruning

Training 
& pruning

● Some AI-to-FPGA frameworks take the weights and biases and pruning portions of the network structure to save 
resources
○ Re-synthesis is required for each new training set
○ Risk of the FPGA implementation failing due to increase resources usage, timing failures or massive change 

in internal interconnect structure

Neural Network

Pruned Network for Retraining
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NW Definition and Area Consumption KCU105

SNL Model Example: Tiny CNN - MNIST
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● Parameters = 7312 
● Latency = 1023 cycles 

~5.115us



NW Definition and Area Consumption for KCU105 

SNL Model Example: MLP-MNIST
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● Parameters = 42310 
● Latency = 3212 cycles 

~16.06us



Further Testing with SNL: Power Comparison
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HW no NN
HW with NN

SW no  NN

SW with NN
• We went further and did power comparison. 

• Table presents the power measurements obtained 

from actual KCU105 board for both CNN and MLP 

examples.

• Observations: 

• There is a clear difference between power estimated 

by Vivado and the actual power measured on HW.

• Specifically, Vivado’s power estimate for the Tiny 

CNN network is differs by 1.4645W when compared 

to the physical hardware measurement. 

• Similarly, Vivado’s power estimate for the MLP 

network differs by 1.0645W. 

• For the MLP NW consumes the higher power, 

because it has a higher no. parameters necessitates 

increased memory mapping and more extensive 

computation between memory and logic cells, 

thereby leading to escalated power usage.



Challenges…

• How can we prune the model without having 
resynthesize the entire design?

• To target transformer style huge networks on FPGA is 
a complex challenging task given the FPGA resource 
constraints.

• It requires Domain scientists and FPGA designers to 
work closely together to optimize design for FPGA 
deployment

• It also requires a significant modification in 
transformer architecture and training processes.
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