
Empowering AI Implementation:
The Versatile SLAC Neural Network Library (SNL) for FPGA, eFPGA , ASIC

SLAC TID

Ryan Herbst, Ryan Coffee, J.J Russell, Abhilasha Dave, Dionisio Doering, Larry
Ruckman

November 7 2023

1

SLAC Neural Network Library (SNL)
Key points:

● Provides specialized set of libraries designed in High-Level
Synthesis (HLS) for deploying ML inferences on FPGAs,
eFPGAs and ASICs

● At the edge of the data chain, SNL aims to create a high-
performance, low-latency FPGA implementation for AI
inference engines.

● Supports Keras like API for layer definition

● Dynamic reloading of weights and biases to avoid re-
synthesis

● Supports 10s of thousands of parameters or more
depending on latency requirements for the inference model

● Total end to end latency of ~couple of usec to couple of

millisecond.

● Streaming interface between layers.

SNL’s Design Flow

C++ Template

Parameters and

Layers definition

C Test Bench

C simulation

RTL Synthesis

C/RTL Co-

Simulation

Packed IP

Export to

Vivado

Linux Kernel
aes-stream-drivers

Rogue

ASIC
2

FPGAs for Latency Critical Neural Network

In context of neural network inference run ASICs, FPGAs, CPUs, GPUs comes with their own strengths and weaknesses.

● ASICs offer the
highest performance
and lowest cost

● Only for targeted
algorithms.

● There is no flexibility

● CPU offers the greatest
programming flexibility.

● Lower compute
throughput.

● Limited Parallelism:
CPUs are optimized for
single-threaded or
limited multi-threaded
performance, which is
often not sufficient for
highly parallel workloads
like neural network
inference.

● GPU performance is
typically much higher
than a CPU and
improved further
when using a large
batch number.

● Processing many
queries in parallel.

● In latency critical real-time

systems, it is not always

possible to batch input

data.
● This is where FPGAs are

somewhat unique, allowing
neural networks to be
optimized for a single query

● Still achieve a high-level
compute resource utilization.

● When an ASIC does not
exist, this makes FPGAs ideal
for latency critical neural
network processing.

3

ASICsFPGAsCPUs GPUs

On-the-fly Weights & Biases Loading

● SNL implementation is targeting scientific instruments which will continuously adapt to new data and changing
environments
○ High speed training to supports this goal
○ Bias and weight updates in real time

FPGA based ML inference run

New
Data
Set

Real-time
experiment

Streaming
input data

Remote Retraining

Reload the new weights and biases
without having to resynthesize the
network 4

Buildable Neural Networks and Future Support

MLPs

● Supported Libraries:
○ NN Layers:Conv2D,

MaxPooling2D, Average
Pooling, Dense

○ Activators: LeakyRelu, Relu,
SoftMax

○ Data Types: Fixed point,
Integer, Floating Point

Fully Connected style
Deep Autoencoders

CNNs/DNNs

● SNL is a work in progress library
● SNL can provide future support for more libraries for

variety of neural networks layer types.
○ e.g: Support to foundational Transformer

Neural Network blocks
● It can also provide Novel weights loading such as

binary or ternary.

Work
in

Progress

5

Challenges with Pruning

Training
& pruning

● Some AI-to-FPGA frameworks take the weights and biases and pruning portions of the network structure to save
resources
○ Re-synthesis is required for each new training set
○ Risk of the FPGA implementation failing due to increase resources usage, timing failures or massive change

in internal interconnect structure

Neural Network

Pruned Network for Retraining

Resynthesis
Place & Route Challenging, Risky

Chance of failure

Time Consuming

Synthesis
Place &
Route

FPGA

New
Data
Set

● Earlier pruned Weights came back
● NW Became heavier

Retraining
& pruning

6

NW Definition and Area Consumption KCU105

SNL Model Example: Tiny CNN - MNIST

7

● Parameters = 7312
● Latency = 1023 cycles

~5.115us

NW Definition and Area Consumption for KCU105

SNL Model Example: MLP-MNIST

8

● Parameters = 42310
● Latency = 3212 cycles

~16.06us

Further Testing with SNL: Power Comparison

9

HW no NN
HW with NN

SW no NN

SW with NN
• We went further and did power comparison.

• Table presents the power measurements obtained

from actual KCU105 board for both CNN and MLP

examples.

• Observations:

• There is a clear difference between power estimated

by Vivado and the actual power measured on HW.

• Specifically, Vivado’s power estimate for the Tiny

CNN network is differs by 1.4645W when compared

to the physical hardware measurement.

• Similarly, Vivado’s power estimate for the MLP

network differs by 1.0645W.

• For the MLP NW consumes the higher power,

because it has a higher no. parameters necessitates

increased memory mapping and more extensive

computation between memory and logic cells,

thereby leading to escalated power usage.

Challenges…

• How can we prune the model without having
resynthesize the entire design?

• To target transformer style huge networks on FPGA is
a complex challenging task given the FPGA resource
constraints.

• It requires Domain scientists and FPGA designers to
work closely together to optimize design for FPGA
deployment

• It also requires a significant modification in
transformer architecture and training processes.

10

	Slide 1
	Slide 2: SLAC Neural Network Library (SNL)
	Slide 3: FPGAs for Latency Critical Neural Network
	Slide 4: On-the-fly Weights & Biases Loading
	Slide 5: Buildable Neural Networks and Future Support
	Slide 6: Challenges with Pruning
	Slide 7: SNL Model Example: Tiny CNN - MNIST
	Slide 8: SNL Model Example: MLP-MNIST
	Slide 9: Further Testing with SNL: Power Comparison
	Slide 10: Challenges…

