Overview of DRDs in Europe

Thomas Bergauer (HEPHY-ÖAW Vienna & CERN)
7 November 2023
Content

• First Part:
 • European Strategy on Particle Physics
 • ECFA Detector Roadmap and its Implementation Plan
 • Detector R&D for the future: the next decades
 • Example: usefulness of strategic R&D

• Second Part:
 • Brief look at planned Detector R&D collaborations

Disclaimer: I am from the Silicon community, and I will use this on several occasions as an example
European Strategy on Particle Physics

Continuous process driven by the community
• First defined 2006
• **Update 2013** brought us HL-LHC decision
• **Update 2020** brought us decisions for post-HL-LHC times:
 • *Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN* with a centre-of-mass energy of at least **100 TeV** and with an *electron-positron Higgs* and electroweak *factory* as a possible first stage.
 • *The European particle physics community must intensify accelerator R&D and sustain it with adequate resources*. A *roadmap should prioritize the technology*, taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. *Deliverables for this decade should be defined* in a timely fashion and coordinated among CERN and national laboratories and institutes.
 • Successful completion of High-Luminosity LHC must remain key focus

http://dx.doi.org/10.17181/CERN.JSC6.W89E
European Committee for Future Accelerators (ECFA) released in 2021 a full document (200 pages) and synopsis (~10 pages) with this content:

The full document can be referenced as DOI: 10.17181/CERN.XDPL.W2EX

- Overview of future facilities (EIC, ILC, CLIC, FCC-ee/hh, Muon collider) or major upgrades (ALICE, Belle-II, LHC-b,….) and its timeline
- Nine Technology domains based on Task Forces areas
 - The most urgent R&D topics in each Task Force area identified as Detector R&D Themes (DRDTs)
- Concludes with ten “General Strategic Recommendations”

Consultation with the particle physics community & other disciplines with technology overlap

7 Nov 2023
DRDs in Europe (T. Bergauer) 4
Future Large Experiments

- Five Time periods defined
 - In agreement with (HL)-LHC
Future “Smaller” Experiments

- Different time periods as for large experiments:
General Strategic Recommendations

The General Strategic Recommendations (GSR) topics are:

• GSR 1: Supporting R&D facilities (test beams, large-scale generic prototyping and irradiation)
• GSR 2: Engineering support for detector R&D
• GSR 3: Specific software for instrumentation
• GSR 4: International coordination and organisation of R&D activities
• GSR 5: Distributed R&D activities with centralised facilities
• GSR 6: Establish long-term strategic funding programmes
• GSR 7: “Blue-sky” R&D
• GSR 8: Attract, nurture, recognise and sustain the careers of R&D experts
• GSR 9: Industrial partnerships
• GSR 10: Open Science

comprehensive explanation to each GSR in backup slides
R&D Topics and DRDTs

- The most urgent R&D topics in each Task Force area are identified by **Detector Readiness Matrix**
 - Tables with much more details exist in roadmap (contains also target numbers for different experimental needs, e.g. ALICE 3: 0.05% X/X₀ (per layer))

- Detector R&D Themes (DRDTs) were formulated as high-level deliverables

Semiconductor Example!

DRDT 3.1
Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors

DRDT 3.2
Develop solid state sensors with 4D-capabilities for tracking and calorimetry

DRDT 3.3
Extend capabilities of solid state sensors to operate at extreme fluences

DRDT 3.4
Develop full 3D-interconnection technologies for solid state devices in particle physics
Strategic R&D towards necessary technologies to build future facilities and experiments

- Addresses the DRDTs in ECFA roadmap by defining suitable deliverables and milestones
 - Technology Readiness Levels (TRL) 3-6
 - Backed up by strategic funding, agreed with funding agencies (MoUs)

- DRD collaborations should also contain a small “blue-sky” section (TRL 1-3)
 - Allow new developments to emerge
 - Possibly financed by common fund + institute contributions (RD50/51 scheme)
Example for the need of strategic funding

My group worked for almost a decade with European semiconductor industry to find a “second source” for large-area planar Si sensors

- Attracted a lot of attention
- Pushed HPK into developing 8” process → now being used for CMS HGCal
- Milestones:
 - 2009: re-produce 6” p-on-n strip sensors
 - 2015: First AC-coupled strip sensors on 8” wafers
 - 2016/17: production of first 8” hexagonal HGCal sensors
 - 2018: program stopped due to economic reasons

Reason for termination of program before series production:

- O(10) more wafer runs (~150k€ each) would have been necessary to mature the technology
- Strategic R&D funding for R&D costs → reduction of series production costs
Roadmap implementation plan

- Approved by CERN SPC and Council in fall 2022 (CERN/SPC/1190; CERN/3679)
- Two bodies review and evaluate DRD proposals:
 - DRD committee: http://committees.web.cern.ch/drdc
 - ECFA Detector Panel: https://ecfa-dp.desy.de
- Interaction between DRD collaborations and committees only through DRDC
DRD Committee (DRDC)

- New committee at CERN on the same level as SPSC and LHCC
- Currently busy reviewing submitted DRD proposals
 - Approval meeting of first collaboration on 4th December
- Starting from next year: monitoring the progress of each DRD collaboration by requesting annual status reports
History of Detector R&D in Europe

• First Detector R&D collaborations have been created at CERN starting in 1990 with the LHC on the horizon:
 RD-1 (est. 1990): Scintillating fibre calorimetry at the LHC (SPACAL)
 •Reviewed by a first DRDC (1990-1995), later by the LHCC
• Last R&D collaboration approved:
 RD53 (est. 2013): Pixel readout ASIC for HL-LHC

• Still active (among several others) and relevant for this talk:
 • RD50 (est. 2002): Radiation Hard Semiconductor Devices for Very High Luminosity Colliders (with predecessors RD20, RD48)
 • RD51 (est. 2008): Development of Micro-Pattern Gas Detectors Technologies

• Work programs and key achievements documented in a 5yrs work plan 2018-23 RD50: [LHCC-SR-007], RD51: [LHCC-SR-006]

Information about RD collaborations:
• CERN experimental program webpage
• CERN Greybook
From ECFA Task forces and RD collaborations to DRD collaborations

Follow the successful model of R&D collaborations at CERN, e.g. RD50 and RD51:
• Reviewed 5-year work plans containing milestones and deliverables
• MoU with all participating institutes and CERN (RD50 signed only in 2019)
• Collection of small common fund (~2k€ per year and institute) to keep the organization running (organization of meetings) and to fund common projects

Goals for new DRD collaborations:
• A similar organization like a HEP experiment (collaboration board as decision body)
• Strategic funding of deliverables agreed with funding agencies via MoUs

Timeline:
• community input (via existing R&D bodies where possible) by Q1 2023
• Written short (~20 pages) proposals for each TF topic by July 2023 (with some exceptions, see later)
• Review by DRDC this fall, with iterations (e.g. re-submission after clarification requests)
• Approval by the end of 2023 → DRD collaborations can officially start beginning of 2024
 • Essential for RD50/RD51 to allow seamless continuation
 • MoU setup and collecting signatures from Funding Agencies starting in 2024
• Annual status reports to DRDC; monitoring of milestones and deliverables
Proposed Detector R&D collaborations

Highlights of scientific programs, organization and community contributions
Proto-Detector R&D Collaborations

- Gaseous Detectors (DRD1)
- Semiconductor Detectors (DRD3)
- Calorimetry (DRD6)
- Photodetectors & Particle ID (DRD4)
- Liquid Detectors (DRD2)
- Quantum Sensors (DRD5)

- Electronics (DRD7)
 - Integration (TF8)
 - Training (TF9)

Targeting mostly HEP

Targeting “smaller experiments”, e.g. rare event searches, DM

Orthogonal topics necessary for all activities
Gaseous Detectors

• from MWPC → Drift Chamber → Time Projection Chamber (TPC) → Micro-Pattern Gas Detectors

• Primary choice for large-area coverage with low material budget & dE/dx measurement (TPC, Drift chamber) & ToF functionality (MRPC, PICOSEC)

Detector readiness matrix:
Gaseous Detectors

Large Areas:
- Systems developed for LHC experiments led to unprecedented large systems, mostly based on MPGDs

Fast Timing:
- Fast timing with Multi-Gap RPCs: achieved ~60ps time resolution (ALICE TOF Detector, Z.Liu, NIM A927 (2019) 396)
- Micromegas with timing (PICOSEC concept): 25ps

Eco-friendly gas mixtures
- 92% of emissions at CERN are related to LHC experiments
- Gas re-circulation: GHG emission reduced by >90%
- Alternatives to C₂H₂F₄ for TPCs with lower Global Warming Potential (GWP)

\[\sigma \approx 25 \text{ ps per track} \]

PICOSEC: NIMA903 (2018) 317
Gaseous Detectors
DRD1: Successor and extension of RD51

- Organized in **Work Packages** (deliverables), **Working Groups** (knowledge and technology hub) and **Common Projects** (blue sky)
- Convenors: TF1: Anna Colaleo (Bari), Leszek Ropelewski (CERN)
 - RD51 Co-Convenors: Eraldo Oliveri (CERN), Maxim Titov (CEA Saclay)
- Large community of 118 institutes
- Community meeting: [most recent June 23](#)
- Web page: https://drd1.web.cern.ch/
Semiconductor Detectors

Remarkable success in HEP enabled by significant advancements in chip industries:

- **Detector area** increased by one order of magnitude each decade (1 m² → 10 m² → 200 m² → 600 m²)
- **Radiation hardness** at levels not imagined decades ago
- **Endcap Timing detectors** for ATLAS and CMS (4D tracking)

New Challenges:

- **FCC-ee**: Vertex detectors with low mass, high resolution:
 - spatial resolution of ≤ 3 µm
 - Material budget x/x₀ ≤ 0.05%
- **FCC-hh**: low power and high radiation hardness (up to 8·10¹⁷ nₑq cm⁻²)
- Pile-up mitigation by ultra-fast timing in O(10-100ps)
- Fully integrated with electronics, mechanics, services
- Large area sensors at low cost (for calorimetry, eg. CMS HGCal)

DRDT 3.1: Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors
DRDT 3.2: Develop solid state sensors with 4D-capabilities for tracking and calorimetry
DRDT 3.3: Extend capabilities of solid state sensors to operate at extreme fluences
DRDT 3.4: Develop full 3D-interconnection technologies for solid state devices in particle physics
Semiconductor Detectors

- CMOS Monolithic sensors: combining sensing and readout elements
 - Sensor development becomes chip development, but typically with modifications to standard process, e.g. Towerjazz 180 nm
 - overlap with DRD7 electronics

- 4D Tracking/ToF: Timing using LGAD sensors
 - Suppression of pile-ups
 - Foundries CNM, FBK, HPK
 - Timing performance (~ 25 ps for 50 μm sensors)
 - Radiation hardness limited by loss of gain

- Radiation hardness
 - Wide bandgap material (SiC, GaN)

CMOS MAPS for ALICE ITS3 (Run 4)
(LOI: CERN-LHCC-2019-018, M. Mager)
DRD3: Semiconductor Detectors

- DRD3 collaboration benefits from existing RD50 collaboration
 - Extended by diamonds (RD42) and 3D integration
 - Organized in Work Packages, Working Groups and Common projects (for blue-sky)
- Convenors: TF3: Nicolo Cartiglia, Giulio Pellegrini
 - RD50: Michael Moll, Gianluigi Casse
 - ~129 institutes, 28 countries, ~900 interested people
- Proposal not (yet) as advanced as DRD1, still changes to WPs and deliverables

DRD3 Institutes

Institutes interested in each DRD3 working group

7 Nov 2023
DRDs in Europe (T. Bergauer)
Calorimetry

• R&D in calorimetry has a particularly long lead-time due
 • Many technology developments (gas, scintillator or Silicon-based readout)
 • Large and challenging prototype setups even in early stages

DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution
DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments
DRD6 Collaboration

- Collaboration emerged from **CALICE** and **CrystalClear** (RD18)
 - Convenors: Roberto Ferrari, Roman Pöschl
 - Proposal received and second version under review by DRDC

- Light-weight organization structure organized in three Work Areas
 - Several projects for different target application and calorimeter types

- Several transversal activities
 - Dedicated calorimeter test beam line requested

WORK AREA 1
- Sandwich calorimeters with fully embedded Electronics

WORK AREA 2
- Liquified Noble Gas calorimeters

WORK AREA 3
- Optical calorimeters

Target applications:
- e+e- collider
- FCC-hh
- Muon collider
- Other

Calorimeter types:
- Electromagnetic
- Hadronic
- Electromagnetic + Hadronic

Project maturity:
- ++ exists a large prototype
- + exists a small prototype
- + at level of proof of principle

<table>
<thead>
<tr>
<th>WA1</th>
<th>WA2</th>
<th>WA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiW Ecal</td>
<td>(+) ++</td>
<td>+</td>
</tr>
<tr>
<td>DECAL</td>
<td>++</td>
<td>EM MAXICC</td>
</tr>
<tr>
<td>Highly compact calorimeter</td>
<td>+</td>
<td>EM CRILIN</td>
</tr>
<tr>
<td>Sc Ecal</td>
<td>++</td>
<td>EM GRAINITA</td>
</tr>
<tr>
<td>AHCAL</td>
<td>+++</td>
<td>EM SPACAL</td>
</tr>
<tr>
<td>ScintGlassHCAL</td>
<td>+</td>
<td>EM RADICAL</td>
</tr>
<tr>
<td>T-DHCAL</td>
<td>+++</td>
<td>EM + HAD DRCAL</td>
</tr>
<tr>
<td>MGPD-HCAL</td>
<td>+</td>
<td>HAD TILECAL</td>
</tr>
<tr>
<td>ADRIANO3</td>
<td>++</td>
<td></td>
</tr>
</tbody>
</table>
Photodetectors & PID

- Particle Identification (PID) essential to identify decays when heavy flavor are present

- **Developments** on MCP-PMTs, SiPMs, Vacuum and gaseous photon detectors

- **Applications** in Ring Imaging Cherenkov Detectors (RICH), Time-of-Flight (ToF), TRD

- Challenges for example for SiPMs: the high dark count rate and moderate radiation hardness prevented their use in RICH detectors where single photon detector required at low noise, but also new ideas emerge (e.g. backside illumination)
DRD4: Photodetectors

- **MCP-PMTs:** Under evaluation for LHCb RICH, TORCH, PANDA, HIKE, etc.
 - Extremely good time resolution <70ps, custom pixelisation possible
 - R&D on lifetime improvements and rate capabilities

- **SiPMs:**
 - Pros: High detection efficiency, low cost
 - Cons: High noise (DCR), neutron damage
 - Many R&D lines being followed: back-side illumination, sensor+electronics integration
DRD4: Particle ID

- **RICH detectors**
 - Proximity focusing aerogel development
 - Possible combination with TOF measurement
 - Environmentally friendly RICH radiator gases (replacement for fluorocarbons)
 - Compact RICH with dual aerogel + gas radiators

- **TOF detectors**
 - SiPMs detecting Cherenkov light from their entrance window
 - DIRC-style: TORCH (10 ps resolution per track over large areas)

- **TR detectors**
 - Solid-state detection of Transition Radiation

7 Nov 2023

DRDs in Europe (T. Bergauer)
• Collaboration currently led by Christian Joram (CERN) + Peter Krizan (Ljubljana) + team of 12 others
 • election of management when collaboration officially constituted in 2024
• About 50 institutes
 • EU + 6 US, 2 China, 2 Japan, 2 Australia, 1 S.Korea, 1 Armenia
• 7 industrial partners
• Connection to almost every other DRD collaboration (gas, Silicon, calo, electronics, SiPM at cryogenic temp.)
Liquid detectors

- Covers Dark Matter and Neutrino experiments, accelerator and non-accelerator-based
- Several large-scale and many small-scale experiments running or foreseen with liquid detectors
- Technology: Noble Liquids (e.g. DUNE), Water Cherenkov (e.g. Super/Hyper-K) and Liquid Scintillator with light and ionization readout
- Underground Dark Matter Experiments – small and rare signals R&D for multi-ton scale noble liquids:
 - Target doping and purification
 - Detector components radiopurity and background mitigation

Note: Developments in this field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D

Modified from L. Baudis
[ECFA roadmap]
DRD2 Collaboration

- Conveners: Roxanne Guenette, Jocelyn Monroe
- DRD2 proposal (26p), divided in four Technology Areas (TA), well aligned to DRDTs
 - Proposal currently under review by DRDC
- DRD2 Collaboration from 114 institutes in 15 countries
 - Significant US contribution (1/4)
 - Nominated liaisons to DRD1,4 and 7
 - A list of companies associated to different TA is included
- Detailed funding request (available/required) for both funds and FTE given in proposal
Quantum Sensors

- Quantum Technologies are a rapidly emerging area of technology development to study fundamental physics
 - Targeting Gravitational Wave, Axion, DM detection
 - Development of HEP detectors on the long term

- Many different sensor and technologies being investigated: clocks and clock networks, kinetic detectors, spin-based, superconducting, optomechanical sensors, atoms/molecules/ions, interferometry, ...

- Several initiatives started at CERN, DESY, UK, ...

Example: potential mass ranges that quantum sensing approaches open up for Axion searches (from: ECFA roadmap)
DRD5 Collaboration

- 40 institutes in 15 countries
- 25 proposed contributions
- conveners: Marcel Demarteau, Michael Doser
- White Paper / LoI being submitted to DRDC
 - Information on personal web page of M. Doser

- A workshop to prepare the proposal for submission by the end of the year took place Oct. 2-4.
Micro-Electronics

• All new techniques (Precision timing, ultra-high granularity and improved signal resolution) need more sophisticated data handling, processing, complexity and power.
 • Requires exploiting the latest advances in commercial microelectronics and high-speed links.
 • Additional HEP requirements: Radiation and magnetic fields (niche and low volume market only)

• Core topic: AISC development
 • Community now looks into 28 nm CMOS nodes for the future and dedicated 130 /110/65 nm technologies for monolithic pixels (DRD3 overlap!)
 • Each new node imposes significantly higher funds necessary
 • Legal topics (NDAs, design sharing agreements, software licenses,..)
 • Organization of multi-project wafer runs

• Strategic developments necessary for systems to be used in large-scale experiments, with synergy across many domains (e.g. DC-DC powering, FMC boards like FC7, GLIB)
 • All DRD collaborations have demands in electronics, from ASICs specific to certain detector technologies to small-scale readout systems
 → expert persons needed to be members of both, original DRD collaboration and electronics (see Annex B in this document)

~40000 FEAST ASICs and ~47000 FEASTMP modules have been/are being delivered to the experiments (ATLAS ITk, New Small Wheel, CMS, Belle-II SVD,...)
DRD7: Electronics

- LoI exists, full proposal to be submitted by the end of this year
 - To ensure no duplication and foster cooperation between different DRDs
- Organization:
 - 50 Institutes, 18 countries
 - Conveners: Francois Vasey, Dave Newbold
 - Six Development areas (WG)
 - 1st workshop happened in March, 2nd workshop 25-27 September 2023
Projects in DRD7

16 projects in a bottom-up approach, but ensured that all are above certain threshold and fit the WGs

- 7.1a: Silicon Photonics Transceiver Development
- 7.1b: Powering Next Generation Detector Systems
- 7.1c: Wireless Allowing Data and Power Transmission

- 7.2a: eFPGA - Programmable Logic Array
- 7.2b: Radiation Tolerant RISC-V processor
- 7.2c: Virtual electronic system prototyping

- 7.3a: High performance TDC and ADC blocks at ultra-low power
- 7.3b-1: Data-driven impact studies and calibration strategies for time measurements
- 7.3b-2: Timing distribution techniques and systems

- 7.4a: Modeling and development of cryogenic CMOS PDKs
- 7.4b: Radiation resistance of advanced CMOS nodes
- 7.4c: Cooling and cooling plates

- 7.5a: COTS architectures, tools and IP
- 7.5b: No backend, full 100GbE solutions from FE to DAQ

- 7.6a: Common access to selected imaging technologies and IP blocks
- 7.6b: Common access to 3D and advanced integration
Task Force 8: Integration

- Target: Mechanical support and structures, cooling, magnets and management of radiation environment
 - DRDTs are quite diverse
 - Some topics are very closely connected to the genuine DRDs, where the technology is developed (e.g. DRDT 8.3)

- No DRD collaboration has been proposed yet, but 16 institutions replied favourably to a community survey
 - Community Meeting on December 6, 2023

Topics:
- Gas cooling development
- Single- and two-phase liquid cooling R&D
- Humidity control
- Temperature control
- Thermal management
- Thermal performance verification
- Thermal interface materials and expansion differences
- Pipe materials, pipe connection techniques and fittings
- Choices and characterisation of construction materials
- 3D printing
- Radiation and mechanics: Materials and issues like access constraints
- FEA and its comparison to real objects
- Structure design and optimisation
- Application of machine learning for design issues
Task Force 9: Training

- A structured training program shall support the scientists in their career
- Increase participation of young scientists, in particular graduate students, in leading-edge instrumentation R&D, and foster growth of future HEP instrumentation experts who can compete for permanent positions
- Establish a master’s degree curriculum

TF9 Training will not become a DRD collaboration, but an ECFA Training Panel has been founded to pursue these activities
New Detector R&D (DRD) collaborations are being set up following the ECFA Detector roadmap to pave the way for the next decades.

- **Main Goal:** Instrumentation is not the limiting factor to meet the needs of the long-term particle physics program
- **Collaboration-building for communities that have not worked together before** (DRD2, DRD4, DRD5)

- **New committee DRDC started to review proposals**
 - Large spread of focus and/or level of detail of the submitted proposals
 - Required and available funds are difficult to estimate and therefore subject to a high level of uncertainty

- **What might be missing at this point?**
 - A coherent picture of **resources across all DRDs** so that funding agencies get the total demand
 - Better **coordination between different DRDs** to **reduce duplications**, especially for electronics
 - Coordinated approach on how to **involve industry** (IP topics) and non-European groups
 - Several groups complain about missing beam test possibilities from 2026 onwards
Summary (2)

• Submitted, currently being reviewed by DRDC: **Gas detectors** (DRD1), **liquid detectors** (DRD2), **semiconductor detectors** (DRD3), **photodetectors & particle ID** (DRD4), **calorimetry** (DRD6)
 • DRDC and CERN research board approval meetings 4th and 6th of December
 • The proposals will then be publicly accessible in the CERN [CDS](#)

• Proposal Submission agreed to be postponed:
 • **Quantum sensors** (DRD5) due to very low TRLs
 • **Electronics** (DRD7) due to necessary coordination with the other groups

DRD collaborations will become operational in 2024
The End.

Acknowledgments: Phil Allport, Didier Contardo, Roger Forty, Susanne Kühn, Felix Sefkow, Laurent Serin, Maxim Titov and others

Links:
- DRD Committee
- Future CERN Indico Section of all DRD Collaborations
- Link to all TF/DRD community meetings and resources
DRDC mandate according to CERN council document

• The DRDC would:
 • The **DRDC reviews proposals in terms of their scientific scope, milestones and technical feasibility**, with the help of topic-specific experts from the EDP, and critically examines all financial aspects of the strategic R&D part of the DRD programme.
 • evaluate the initial request for DRD resources with a focus on the required effort and how it matches the pledges by participating institutes (paying particular attention to justification and to existing staff, infrastructures and funding streams);
 • decide whether to recommend approval
 • conduct reviews of the progress of the DRD collaborations by asking for annual status reports
 • be the single body that interacts with the existing CERN committee structure for the purposes of approvals, reporting, etc.

• In its expanded role the **ECFA Detector Panel (EDP)** would:
 • provide direct input on DRD proposals, through the appointment of members to the **DRDC** → Three members and respective chairmen (ex-officio) in both EDP and DRDC
Timeline ECFA Roadmap

Organisation
- **May 2020**
 - EPPSU mandate to ECFA to develop a roadmap for detector R&D efforts in Europe
- **Sep 2020**
 - Structure in place with Detector R&D Roadmap Panel
- **Dec 2020**
 - Task Forces active

Expert & Community Consultation
- **Feb 2021**
 - Collection of requirements of future facilities & projects
- **Feb/March 2021**
 - Questionnaires of Task Forces to national contacts
 - Task Forces liaise with experts in:
 - ECFA countries
 - adjacent disciplines
 - industry

Drafting Roadmap & Feedback
- **May 2021**
 - Task Forces collate input from symposia
- **25-28 May 2021**
 - Drafting sessions
 - open session with all experts involved
 - plenary & parallel sessions with Task Force members
 - final session of Roadmap Panel
- **2 July 2021**
 - Near final draft shared with RECFA*
- **30 July 2021**
 - Presentation at Joint ECFA-EPS session
- **Oct 2021**
 - Detector R&D Roadmap Document submission to RECFA and afterwards to PECFA and Council

Notes
- *community feedback via RECFA delegates and National Contacts

Website:
https://indico.cern.ch/e/ECFADetectorRD Roadmap

[Image of the timeline diagram]

7 Nov 2023
DRDs in Europe (T. Bergauer)
Committee Members

ECFA Detector Panel (EDP):

- Co-chairs: Phil Allport (Birmingham), Didier Contardo (Lyon)
- Scientific secretary: Doris Eckstein (DESY)
- Gaseous Detectors: Silvia Dalla Torre (Torino)
- Liquid Detectors: Inés Gil Botella (CIEMAT)
- Solid State Detectors: Doris Eckstein, Phil Allport
- PID & Photon Detectors: Roger Forty (CERN)
- Quantum and emerging Technologies.: Steven Hoekstra (Groningen)
- Calorimetry: Laurent Serin (IJCLab)
- Electronics: Valerio Re (Bergamo)
- Ex Officio: ECFA Chair (Karl Jakobs), ICFA Detector Panel (Ian Shipsey), DRDC chair (Thomas Bergauer), APPEC & NuPECC observers

Detector R&D Committee (DRDC):

- Thomas Bergauer (HEPHY Vienna), Chairperson
- Stan Bentvelsen (NIKHEF)
- Shikma Bressler (Weizmann)
- Dimitry Budker (Mainz)
- Roger Forty (CERN)
- Claudia Gemme (INFN and U. Genoa)
- Inés Gil Botella (CIEMAT)
- Petra Merkel (Fermilab)
- Mark Pesaresi (Imperial College)
- Laurent Serin (IJCLab)
- Ex-officio: P. Allport, D. Contardo (EDP)

Names in bold in both committees
Checklist for proposal evaluation

1. Check if the proposal format matches guidance document from EDP (tables, layout,..)
 - Document linked here and here (if not accessible at Indico)
2. Milestone and Deliverables match ECFA detector roadmap
3. Committed resources (FTE /funds) match the demand given by the scientific program
4. Collaboration structure exists (institution board, conference board, decision-making bodies,..)
5. Common fund and its usage (for small bottom-up projects, but also for administration?)
6. Overlap/transition from existing collaborations explained
 - DRD1/3: RD51/50: common projects, common fund
 - DRD6: Calice, CrystalClear
 - DRD5: CERN quantum initiative
7. Interconnections
 - Explanation of scientific topics which overlap with other DRDs, especially electronics
 - Liaisons nominated to other DRDs and the US DRC groups
 - Industry participation
2. Main Proposal:

To keep the process manageable for both proponents and reviewers, it is recommended that the DRD proposal document should not exceed 20 pages, following a common outline template as suggested below:

• Introduction (objectives of the DRD collaboration)
• Planning technology area 1 (including a task/deliverable synoptic, resources and list of contributing institutes)
• ...
• Planning technology area n (including a task/deliverable synoptic, resources and list of contributing institutes)
• Interfaces to other DRD proposals - including particularly the links to DRD7 as a transversal Detector R&D topic area
• Common simulation tools and test facilities
• Partnerships (industrial, other research areas, other applications)
• Networking and training
• Proposal for the collaboration structure
• Resources (as discussed below) both existing and anticipated
• Summary (high level planning synoptic by DRDT broken-down to sub-areas)
Draft DRD Proposal Guidance

(16th February 2023)

Updated 29th June 2023 following discussion with DRDC Chair

List of Contributing Institutes

<table>
<thead>
<tr>
<th>Technology 1</th>
<th>Technology 2</th>
<th>Technology n</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRDT 1</td>
<td>DRDT 2</td>
<td>DRDT n</td>
</tr>
</tbody>
</table>

List of deliverables per technology and DRDT

Timeline of milestones and major deliverables per DRDT and technology

<table>
<thead>
<tr>
<th>Technology 1</th>
<th>Technology n</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRDT 1</td>
<td>DRDT n</td>
</tr>
</tbody>
</table>

Timeline of FTE per DRDT and technology

<table>
<thead>
<tr>
<th>Technology 1</th>
<th>Technology n</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRDT 1</td>
<td>DRDT n</td>
</tr>
</tbody>
</table>

Timeline of Materials and Services (non-FTE) funding per DRDT and technology

<table>
<thead>
<tr>
<th>Technology 1</th>
<th>Technology n</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRDT 1</td>
<td>DRDT n</td>
</tr>
</tbody>
</table>

7 Nov 2023

DRDs in Europe (T. Bergauer)

46
General Strategic Recommendations

GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: test beams, large scale generic prototyping and irradiation be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation.

GSR 2 - Engineering support for detector R&D

In response to ever more integrated detector concepts, requiring holistic design approaches and large component counts, the R&D should be supported with adequate mechanical and electronics engineering resources, to bring in expertise in state-of-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of state-of-the-art R&D-specific software packages must be maintained and continuously updated. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysts for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.
General Strategic Recommendations

GSR 5 - Distributed R&D activities with centralised facilities
Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes
Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 7 – “Blue-sky” R&D
It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. “Blue-sky” developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.
General Strategic Recommendations

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

It is recommended to identify promising areas for close collaboration between academic and industrial partners, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry, in particular for developments in solid state sensors and microelectronics.

GSR 10 – Open Science

It is recommended that the concept of Open Science be explicitly supported in the context of instrumentation, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP 3) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.
Beam test schedule

By coincidence, there is a lack of beam test possibilities in 2026-2028. At CERN this is caused by LHC LS3 and the upgrade to HL-LHC

https://cern.ch/international-facilities