FREQUENCY MULTIPLEXING OF CRYOGENIC SENSORS
FOR THE RICOCHET EXPERIMENT

CPAD Workshop

Wouter Van De Pontseele
November 8, 2023
wvdp@mit.edu
Open questions in particle physics ...

• What can we learn from coherent ν scattering at a reactor?
• How do particle interactions in superconducting crystals look like?

... And more practical ones ...

• How to lower the recoil threshold?
• Can we scale up the readout of segmented cryogenic detectors?

... Can quantum technologies help?
CEνNS was proposed 50 years ago!
Flavour-independent and sensitive to new physics.

[Freeman, 1974]
CEνNS was proposed 50 years ago!
Flavour-independent and sensitive to new physics.

\[
\frac{d\sigma}{dE_{\text{recoil}}} = \frac{G_F^2 M}{4\pi} [Z(1 - 4\sin^2 \theta_W) - N]^2 \left(1 - \frac{M_N E_r}{2E^2_\nu}\right) F_W^2(q^2)
\]

Target trade-off between \(\sigma \propto N^2 E^2_\nu \) and \(E^\text{max}_r \approx \frac{2E^2_\nu}{M_N} \)

[Freedman, 1974]
COHERENT ELASTIC ν-NUCLEUS SCATTERING

CEνNS was proposed 50 years ago!
Flavour-independent and sensitive to new physics.

$$\frac{d\sigma}{dE_{\text{recoil}}} = \frac{G_F^2 M}{4\pi} \left[Z(1 - 4\sin^2 \theta_W) - N \right]^2 \left(1 - \frac{M_N E_r}{2E^2_{\nu}} \right) F^2_w(q^2)$$

Target trade-off between $\sigma \propto N^2 E^2_{\nu}$ and $E^\text{max}_r \approx \frac{2E^2_{\nu}}{M_N}$

First observed by COHERENT at the Spallation Neutron Source, Pion decay at rest source kg-scale sodium-doped CsI scintillator in 2017.

Wouter Van De Pontseele
CEνNS has been discovered... Why would we look for it at a reactor?

Reactor neutrino energies are an order of magnitude below pion-decay-at-rest neutrinos → **Recoil energies** are two orders of magnitude lower!

- Form factor less important, almost purely coherent.

Diagram Description

- **Event rate vs. Recoil Energy**
- **v-flux**: $10^{12} \text{ cm}^{-2} \text{s}^{-1}$
- **Ge Target**
- **Standard Model**
- **Reactor neutrino nuclear recoil endpoint**: $\sim 1 \text{ keV}$

Wouter Van De Pontseele
Reactor neutrino energies are an order of magnitude below pion-decay-at-rest neutrinos → **Recoil energies** are two orders of magnitude lower!

- Form factor less important, almost purely coherent.
- **higher sensitivity to new physics**
 - Neutrino magnetic moment
 - BSM Light Mediators
 - Sterile neutrino oscillations

CEνNS has been discovered...

Why would we look for it at a reactor?

Wouter Van De Pontseele
Reactor neutrino energies are an order of magnitude below pion-decay-at-rest neutrinos → **Recoil energies** are two orders of magnitude lower!

- Form factor less important, almost purely coherent.
- higher sensitivity to new physics
 - Neutrino magnetic moment
 - BSM Light Mediators
 - Sterile neutrino oscillations
- Reactors offer **challenging background** conditions with muons, gamma’s and neutrons.
Ricochet aims to build a low-energy reactor neutrino observatory at the ILL reactor in France.

- A double cryogenic detector payload: Cryocube (Germanium crystals) and Q-Array (Superconducting crystals).
- Modular kg-scale detector
- Complementary technologies with Discrimination between electronic (ER) and nuclear recoil (NR)
- Active R&D with the first phase starting to take ν data mid 2024.

Wouter Van De Pontseele
THE RICOCHET EXPERIMENT: CRYOCUBE + Q-ARRAY

Wouter Van De Pontseele
The detectors and readout chain envisaged can be broken up into four parts that are designed, fabricated and tested individually. Each of these has applications beyond CEνNS and is pursued by many quantum computing and fundamental physics projects.
CRYOGENIC FREQUENCY MULTIPLEXING

Diagram:
- Ti + Au Crystal
- TES
- RF Multiplexer
- TWPA
- Frequency symbol (ν)
Why?

- **Mass/size per detector limited** to the $O(\text{cm})$ scale to keep heat capacity small and have *ballistic phonon and QP propagation* [Hochberg et al., 2016].
- CEνNS, $0\nu\beta\beta$ and WIMP *rates scale with detector mass*.
- Next generation experiments will aim at $O(100)$ *channels*.
- **Minimise heat load** and cold-stage complexity.
MULTIPLEXING TES ARRAYS

Why?

• **Mass/size per detector limited** to the $\mathcal{O}(\text{cm})$ scale to keep heat capacity small and have **ballistic phonon and QP propagation** [Hochberg et al., 2016].
• **CEνNS, $0\nu\beta\beta$ and WIMP rates scale with detector mass.**
• Next generation experiments will aim at $\mathcal{O}(100)$ channels.
• **Minimise heat load** and cold-stage complexity.

How?

• Time domain multiplexing
• Frequency domain multiplexing
• Code domain multiplexing
MULTIPLEXING TES ARRAYS

Why?

- **Mass/size per detector limited** to the $\mathcal{O}(\text{cm})$ scale to keep heat capacity small and have **ballistic phonon and QP propagation** [Hochberg et al., 2016].
- **CEνNS, 0νββ and WIMP rates scale with detector mass**.
- Next generation experiments will aim at $\mathcal{O}(100)$ channels.
- **Minimise heat load** and cold-stage complexity.

How?

- **Time domain multiplexing**
 Noise scales with $\sqrt{\#\text{channels}}$.
- **Frequency domain multiplexing**
 Limited by single SQUID bandwidth of $\mathcal{O}(\text{MHz})$.
- **Code domain multiplexing**
 TES-SQUID wiring complexity scales as $(\#\text{channels})^2$.
MULTIPLEXING TES ARRAYS

Why?

- Mass/size per detector limited to the $\mathcal{O}(\text{cm})$ scale to keep heat capacity small and have ballistic phonon and QP propagation [Hochberg et al., 2016].
- CEνNS, $0\nu\beta\beta$ and WIMP rates scale with detector mass.
- Next generation experiments will aim at $\mathcal{O}(100)$ channels.
- Minimise heat load and cold-stage complexity.

How?

- Time domain multiplexing
 Noise scales with $\sqrt{\#\text{channels}}$.
- Frequency domain multiplexing
 Limited by single SQUID bandwidth of $\mathcal{O}(\text{MHz})$.
- Code domain multiplexing
 TES-SQUID wiring complexity scales as $(\#\text{channels})^2$.
 → Microwave-SQUID multiplexing (μMUX)
MICROWAVE MULTIPLEXING: THE CONCEPT

FROM HOLMES (2019)
Resonator devices fabricated using tri-layer Al process at Lincoln Laboratories.
Resonator monitoring and phase demodulation from Holmes (2019)

\[|S_{21}| \text{ [dB]} \]

\[\delta f \]

\[\phi(S_{21}) \text{ [rad]} \]

\[\delta \phi \]

\[f_0 \]

\[f \]

\[\phi_1 = 9.83 \]

\[\phi_2 = 3.21 \]

\[\phi_3 = 1.36 \]

\[\phi_4 = 0.67 \]

\[\phi_5 = 0.36 \]

\[\phi_6 = 0.20 \]

\[\text{ramp} \]

\[\text{free oscillations} \]

\[\text{transient} \]

\[\text{Time [ms]} \]

Wouter Van De Pontseele
MICROWAVE MULTIPLEXING: MEASUREMENT SETUP

- Frequency Generator
- Spectrum Analyser
- Network Analyser
- HEMT Amplifier
- Room Temperature Amp
- Directional Coupler
- RF Switch
- Resonators
- Isolator
- RF Switch
- 4K
- 10dB
- 20mK
- Through line
Resonant frequency depends on the current through the inductance.

- **Periodicity** enables determination of flux quantum \(\Phi_0 \).
Resonant frequency depends on the current through the inductance.

- **Periodicity** enables determination of flux quantum \(\Phi_0 \).
- **Sensitivity** of \(\approx 4\mu\Phi_0/\sqrt{\text{Hz}} \) measured, Translates to \(\approx 30\text{pA}/\sqrt{\text{Hz}} \) TES current noise.
Comparison of design and measured parameters

- $|S_{21}|$ fit to extract resonant frequency, internal and external quality factor.
- Fit of resonant frequency as a function of SQUID flux and probe tone power to obtain inductances.

Wouter Van De Pontseele
MULTI-RESONATOR READOUT WITH TONE TRACKING

[Yu et al., 2023]

Fully automated readout using SLAC Microresonator RF (SMuRF) Electronics.

- Complexity moved to warm electronics.
- FPGA-based resonator tone-tracking.
- DAQ with TES-pulse demodulation.
- Capable of up to $\mathcal{O}(1000)$ channels.

Test setup at MIT with 18 resonator device.
Injected signal-like pulse train reconstructed with MIT multiplexer and SMuRF electronics!
CONCLUSION & OUTLOOK
CONCLUSION & OUTLOOK

The Ricochet Experiment

- CEνNS **cross-section** using cryogenic detectors.
- Expected to take reactor **data in 2024** in France.

Superconducting Crystal and TES Measurements

- **Pulses** in prototype superconducting Al crystal.
- Energy **calibration using sources** in progress.

Q-Array RF multiplexed Readout

- Optimised **18-resonator devices fabricated**.
- R&D into **high dynamic range quantum amps**.
Thank you!

Special thanks to
Joseph Formaggio & Ricochet,
Jiatong Yang, Patrick Harrington,
William Oliver, Steve Weber,
MIT Lincoln Laboratories & MIT.Nano,
Cyndia Yu, Shawn Henderson, Zeeshan Ahmed

The transferred momentum of a \(\nu \) ping pong ball of a nucleus bowling ball is \(\approx 2E_\nu \). The interaction will only be coherent if the transferred momentum is small compared to the radius of the nucleus:

\[
2E_\nu < \frac{1}{r_N} \approx \frac{3\sqrt{A}}{200 \text{ MeV}}
\]

For higher \(E_\nu \), form factors need to be taken into account.
The recoil energy of the nucleus can be calculated exactly like Compton scattering:

\[E_r = \frac{E_{\nu}^2(1 - \cos \theta)}{M_N + E_{\nu}(1 - \cos \theta)} \]

\[
\frac{d\sigma}{dE_{\text{recoil}}} = \frac{G_F^2 M}{4\pi} [Z(1 - 4 \sin^2 \theta_W) - N]^2 \left(1 - \frac{M E_r}{2 E_{\nu}^2}\right) F_W^2(q^2)
\]
The recoil energy of the nucleus can be calculated exactly like Compton scattering

\[E_r = \frac{E^2}{M_N} \left(1 - \cos \theta \right) + E_{\nu} \left(1 - \cos \theta \right) \]

Trade-off between \(\sigma \propto N^2E_{\nu}^2 \) and \(E_{r_{\text{max}}} \approx \frac{2E_{\nu}^2}{M_N} \)

Wouter Van De Pontseele
The COHERENT Experiment at the Spallation Neutron Source, Oak Ridge National Laboratory

Pion decay at rest source with a 14.6-kg sodium-doped CsI scintillator in 2017.

Wouter Van De Pontseele
Map out N^2 dependence and test the SM with a variety of technologies and targets!

Wouter Van De Pontseele
Current Status of CEνNS Reactor Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Technology</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>νGen</td>
<td>HPGe, ionisation</td>
<td>KNPP, Russia</td>
</tr>
<tr>
<td>BULLKID</td>
<td>Si/Ge, MKIDs</td>
<td>Italy</td>
</tr>
<tr>
<td>CONNIE</td>
<td>Si CCDs</td>
<td>Angra 2, Brazil</td>
</tr>
<tr>
<td>CONUS</td>
<td>HPGe, ionisation</td>
<td>Brokdorf, Germany</td>
</tr>
<tr>
<td>MINER</td>
<td>Si/Ge cryogenic</td>
<td>Texas A&M, US</td>
</tr>
<tr>
<td>NCC-1701</td>
<td>proportional counter Ge</td>
<td>Dresden-II, US</td>
</tr>
<tr>
<td>News-G</td>
<td>Spherical proportional counter</td>
<td>Canada</td>
</tr>
<tr>
<td>Neon</td>
<td>NaI(Tl) crystal</td>
<td>Hanbit 6, Korea</td>
</tr>
<tr>
<td>Nucleus</td>
<td>CaWO$_4$, TES, heat-only</td>
<td>Chooz, France</td>
</tr>
<tr>
<td>RED-100</td>
<td>Xe/Ar TPC</td>
<td>KNPP, Russia</td>
</tr>
<tr>
<td>Ricochet</td>
<td>Ge & superconducting crystals</td>
<td>ILL, France</td>
</tr>
<tr>
<td>Texono</td>
<td>proportional counter Ge</td>
<td>Taiwan</td>
</tr>
<tr>
<td>SBC</td>
<td>Scintillating bubble chamber</td>
<td>Mexico</td>
</tr>
</tbody>
</table>

Wouter Van De Pontseele
THE RICOCHET EXPERIMENT @ ILL REACTOR IN FRANCE

Reactor Core
8.8m distance to core
12.8 evts/day/kg (above 50eV threshold)

Cryostat & Shielding

Local Crane (1t)

Technical Cabin (pumps etc.)

Control Cabin

Shielding Rails

Calibration Source

Wouter Van De Pontseele
Basic thermalised microcalorimeter principle

- Energy E gets deposited into the absorber and thermalises.
- Strong thermal link $G_{\text{sensor-absorber}}$ connects to the sensor.
- Absorber-sensor system heats up with $\Delta T = E/C_{\text{tot}}$.
- Weak thermal link with bath sets the decay time of the pulse.

Small absorber+sensor heat capacity leads to large thermalised signals at millikelvin temperatures!