

Skipper CCD-in-CMOS active pixel sensor: status and first characterization results

Photographer: Ryan Postel

Speaker: G. Fernandez Moroni FNAL: D. Braga, F. Fahim, J. Estrada, A. Quinn, C. Chavez, G. Fernandez Moroni, B. Parpillon, H. Sun, M.B. Valentin, X. Wang, T. Zimmerman, L. Ah-Hot, C. Chen SLAC: L. Rota, A. Gupta, A. Dragone Centro Atomico Bariloche: F. Alcade, M. S. Haro Tower Semiconductor: A. Birman, A. Fenigstein UNS: A. Lapi, F. Chierchie

Skipper CCD

3x3 operation cartoon

CPAD, Nov 2023

Shift charge in serial register one pixel down (3 times)

More about Skipper-CCDs: doi.org/10.1002/asna.20230072 ,arXiv:1706.00028, 2107.00168, 2004.11378

Semiconducto

2

Thanks Brenda for the slide! (from)

Fast-readout technologies with single-electron resolution

First prototypes are currently being tested showing great results!

Multi-Amplifier Sensing (MAS) CCDs ,16-ch Skipper-CCD

[arXiv:2308.09822] *doi.org/10.1002/asna.20230072

See Wednesday's talk by

CCDs with n-Sisero stage

[arXiv:2310.13644]

talk by Blas Irigoyen for latest results on MAS! and Thursday's talk by

Kenneth Lin and Thursday's

and Thursday's talk by Guillermo Fernandez for latest results on skipper-in-CMOS

Skipper-in-CMOS [B. Parpillon @ CPAD 2022]

emiconducto

Overview

- Project: Skipper CCD in CMOS Sensor with Non-Destructive Readout Co-Design
- **Support:** Work supported by the DOE Office of Science under the Microelectronics Co-Design Research Project "Hybrid Cryogenic Detector Architectures for Sensing and Edge Computing enabled by new Fabrication Processes" (LAB 21-2491)
- Goal: Design and Fabricate Single-Photon Image Sensor Prototype
- Innovation:
- Sensor with Pinned PhotoDiode (PPD) for conversion
 - ✓ Much higher Conversion Gain than CCD (100uV/e- vs 3uV/e-)
 - ✓ Low leakage
 - \checkmark Lower noise per measurement than CCD
- Skipper CCD for charge

manipulation

- ✓ High charge transfer efficiency
- ✓ Enables Non-Destructive Readout (NDR) capability
- ✓ Enables noise averaging feature

Co-integrated CMOS process

- ✓ Readout parallelization capabilities
- ✓ Much faster readout time than CCD*
- ✓ Finer feature size
- ✓ High-Volume capability

Top-Level Overview

- MPW with front-side illumination
- Size: 5x5 mm²
- Active area: 3x3 mm²
- Pixel design compatible with Back-Side Illumination
- n-type channel detector

Top-Level Overview

- MPW with front-side illumination
- Size: 5x5 mm²
- Active area: 3x3 mm²
- Pixel design compatible with Back-Side Illumination
- n-type channel detector

Collaboration Landscape:

- 1. Tower Semi: CMOS and Pixel Technology
- 2. Centro Atómico Bariloche: Pixel and Matrix testing
- 3. Fermilab: Front End Readout Design #Fermilab
- 4. SLAC: Digital blocks and top-level implementation
- 5. Fermilab, UNS: testing

Physics Applications

- 1. Low mass dark matter searches
- 2. Single electron trackers for dark sector searches
- 3. Soft x-ray spectroscopy
- 4. Astrophysics: deep measurements of dark energy and dark matter signatures
- 5. Single-photon quantum sensing

Analog Front-End

SLAC NATION/

est

structures

3 mm

5 mm

AFE Single Column Readout Chain Overview

Architecture Selected:

- 1. Small, Fast, Low noise
- Gain tunable with Cin/Cfb capacitance ratio
 → High gain desirable in low light condition to improve SNR
- 3. Skipper operation effective up to the track & hold
- 4. Other noise sources (ie: KTC noise from track & hold, or sources from differential driver) are made insignificant due to the PGA gain

To off-chip test board

Will perform readout, CDS and skipper operations

Spec	min	typ	max	unit	condition
IDC		24		mA	Nominal corner
Power		120		mW	Nominal corner
Output referred noise		188		uV	Noise tran, 0e-, cds=4pF, gain=1
ENC		1.6		e-	Noise tran, 0e-, cds=4pF, gain=1
ENC		<1		e-	Noise tran, 0e-, cds=4pF, gain=35
linearity: 1-R^2		9.8E-08		NA	gain =1, from 0e- to 11Ke-
Dynamic Range	1		11000	e-	Gain =1 and 2
Gain	1		35	V/V	

AFE Specification

- Achieve single-electron CMOS Imaging
- High dynamic range
- Microsecond readout time

Pixel

Variable	Value	Unit
Conversion Gain	115	µV/e⁻
Dynamic range	11000	e
White Noise	<10e-9	V/√Hz
Fnc	>100	MHz
ENC (single Meas)	<1	e-

Analog Readout

Variable	Min	Target	Мах	Unit
Input Amplitude	1		11000	e
Input Amplitude	0.125		1375	mV
PGA gain (trimmable: 4-bit)	1		64	V/V
measurement time	1	10		μs
Temperature	-40	27		С
ENC (single measurement)		<2		e-

Testing setup

- Focused in the proof of concept operation of the pixel structure.
- Agustin Lapi, Claudio Chavez in charge of its characterization.
- Test at Different temperatures
- Results presented here at 130K
- Characterization of the pixel structure by individual tests.

1400 1200 1000 Pixel value (ADUs) 800 600 400 200 -20200 400 600 800 1000 Measurement Index ~170 s

- Output stage characterization
- Decouple the noise from charge production
- Each point has 3000 skipping samples
- The performance should improve in the full matrix using on chip electronics

- Output stage characterization
- Decouple the noise from charge production
- Each point has 3000 skipping samples

The performance should improve in the full matrix using on chip electronics

- Demonstration of noise reduction
- Single sample noise s
- Measurements from the SF showing much lower noise. Some extra LF noise.

- Output stage characterization
- Demonstration of noise reduction
- □ Single sample noise s

□ Measurements from the SF showing much lower noise. Some extra LF

noise.

Charge transport from the usage using light

- from the PPD.
- Single poly layer for the gates
- Evaluate the possibility of charge production that is not correlated with exposure time.

Single photon counting

- Sensitivity of the output node ~5 times larger than the Skipper CCD.
- The mean/variance ratio is compatible with the Poisson distribution of the photons arriving to the PPD.

Additional comments

- 9 months one person full time to resolve single photons
- Many Lessons learned: It took us ~8 years to understand how to operate in single photon mode with the Skipper CCD

Instrumentation of the full matrix

- New adaptor board sent for fabrication to instrument the full matrix
- □ Instrument the full matrix
- The full matrix has 20 different pixel architectures with small modifications in the pixel architecture
- □ Architecture: 20 variants 5 Splits: 400 pixel falvors

Skipper-in-CMOS: phase II

Goal of Skipper-in-CMOS phase II:

Increase frame-rate to 1 kfps

Novel architecture with 3D integration:

- Increase parallelism of the system: x16 pixel cluster connected to an ADC
- Skipper-in-CMOS with back-side illumiation (BSI) bonded to readout ASIC (SPROCKET) on CMOS 65nm

Skipper ASIC:

 Pixel matrix with skipper functionality

Readout ASIC:

- ADCs
- Real-time data processing
- Fast I/Os

Conceptual design of camera based on tiled, full-reticle Skipper-in-CMOS sensors

SPROCKET (Skipper-CCD Parallel Read-Out Circuit) readout ASIC

Readout ASIC for hybrid bonding with image sensor.

In-pixel readout front end includes a preamplifier, correlated double-sampling circuit, and 10b SAR ADC in ~30×30µm (60x60 µm including digital)

- SPROCKET1 (Sep '22): 64 x 32 pixel array with in-pixel ADC
- SPROCKET2 (Dec '22): second version including analog pile-up capability
- SPROCKET3A (May '23): Prototype of digital control + pattern generation
- SPROCKET3 (Nov '23): 320 x 64 pixel array, includes full functionality to be bump-bonded to CMOS image sensor
- SPROCKET3-FR (Summer '24): Full-reticle SPROCKET

10b, 100KSPS in-pixel ADC (~30x30μm)

SPROCKET1 Analog Pixel Layout

SPROCKET1 Die Photo

SPROCKET3

- **SPROCKET3** is the final SPROCKET prototype before a full-reticle ROIC is developed, including:
- 20,480 ADC pixels (bump bond to 327,680 CIS pixels)
- In-pixel readout front end including in-pixel analog pileup and at 10b SAR ADC w/ 60 μm pitch.
- Completely integrated pattern generator + control circuitry to drive both ADCs and Skipper-CCD-in-CMOS logic.
- 20.48 GHz transmitter with 10 GHz VCO co-designed with integrated photonic readout in collaboration with the University of Washington

CIS1
ROIC1 / SPROCKET3

SPROCKET3 ROIC integrated with a CMOS Image Sensor (CIS) and Photonic IC (PIC) Readout

SPROCKET3 Layout Capture

Conclusions

- The single photon counting capability of the pixel unit has been demonstrated.
- Extra optimization is required to get the best performance of the device.
- Most of this optimization will come from the instrumentation of the full matrix. Different pixels architectures.
- Test of the full matrix will start soon.
- A second version of BSI device is being designed.
- A fast readout ASIC for bump bonding to the sensor is being developed.

What is Skipper CCD?

- Originally developed for CCD readout technique
- Allow to perform Non-Destructive Readout of the charge
- Signal is correlated, noise is not; improve SNR by \sqrt{N}
- Integrated noise < 1 e- is possible!
 - → Allow to do single photon imaging

Skipping versus Correlated Multiple Sampling

Final pixel value is pix = avg(signal - pedestal), noise scales as $\sqrt{#samples}$ Skipper readout is NOT the same as Correlated Multiple Sampling (CMS) Thanks to the non-destructive read-out, pedestal and signal are sampled close to each other \rightarrow filter low frequency noise too

Top-Level Overview: why a rolling-shutter architecture

- Goal of 1st prototype: demonstrate low-noise readout based on Skipper operation
- Implemented rolling-shutter architecture:
 - Control signals are common to all pixels in a row
 - Only one row is active, readout signals are gated in non-active rows (pixel under RST)
 - Avoid redundant charge transfer across PD/gates in non-active rows
 - Reduce digital activity, minimize noise coupling
- Read-out is not fully-parallel: 20 columns are multiplexed to 1 readout channel
 → In non-active columns, redundant charge transfer is still happening

Skipper-in-CMOS: phase II

Goal of Skipper-in-CMOS phase II:

Increase frame-rate to 1 kfps

Novel architecture with 3D integration:

- Increase parallelism of the system: x16 pixel cluster connected to an ADC
- Skipper-in-CMOS with back-side illumiation (BSI) bonded to readout ASIC (SPROCKET) on CMOS 65nm

Skipper ASIC:

 Pixel matrix with skipper functionality

Readout ASIC:

- ADCs
- Real-time data processing
- Fast I/Os

Conceptual design of camera based on tiled, full-reticle Skipper-in-CMOS sensors

SPROCKET (Skipper-CCD Parallel Read-Out Circuit) readout ASIC

Readout ASIC for hybrid bonding with image sensor.

In-pixel readout front end includes a preamplifier, correlated double-sampling circuit, and 10b SAR ADC in ~30×30µm (60x60 µm including digital)

- SPROCKET1 (Sep '22): 64 x 32 pixel array with in-pixel ADC
- SPROCKET2 (Dec '22): second version including analog pile-up capability
- SPROCKET3A (May '23): Prototype of digital control + pattern generation
- SPROCKET3 (Nov '23): 320 x 64 pixel array, includes full functionality to be bump-bonded to CMOS image sensor
- SPROCKET3-FR (Summer '24): Full-reticle SPROCKET

10b, 100KSPS in-pixel ADC (~30x30μm)

SPROCKET1 Die Photo

SPROCKET3

- **SPROCKET3** is the final SPROCKET prototype before a full-reticle ROIC is developed, including:
- 20,480 ADC pixels (bump bond to 327,680 CIS pixels)
- In-pixel readout front end including in-pixel analog pileup and at 10b SAR ADC w/ 60 µm pitch.
- Completely integrated pattern generator + control circuitry to drive both ADCs and Skipper-CCD-in-CMOS logic.
- 20.48 GHz transmitter with 10 GHz VCO co-designed with integrated photonic readout in collaboration with the University of Washington

CIS1
ROIC1 / SPROCKET3

SPROCKET3 ROIC integrated with a CMOS Image Sensor (CIS) and Photonic IC (PIC) Readout

SPROCKET3 Layout Capture

