November 8, 2023

Simulated Performance of the SiD Digital ECAL Based on Monolithic Active Pixel Sensors

Jim Brau,
University of Oregon

on behalf of
the SiD MAPS Collaboration
(M. Breidenbach, A.Habib, L. Rota, C.Vernieri et al.)

Research partially supported by the U.S. Department of Energy

“The SiD Digital ECAL Based on Monolithic Active Pixel Sensors”, 10.3390/instruments6040051, Instruments, 6, 51 (2022)
SiD Digital ECAL Based on MAPS

- Upgrade ILC TDR design to replace sensors with 13 mm\(^2\) analog pixels with 25 x 100 um\(^2\) (or 25 x 50 um\(^2\)) digital pixels.

- How well can we measure energy and shower structure with digital system:
 - Compared to SiD baseline of analog measurements.
 - Can the detailed structural measurements be used to improve measurement?
 - Would a neural net optimization offer an improvement?

- What are the limits of transverse separation and measurement?
Large area MAPS for SiD tracker & ECal

Benefits of large-area MAPS:

- Standard CMOS foundry, low resistivity: cost ↓
- Sensing element and readout electronics on same die
 - In-pixel amplification: noise ↓, power ↓
 - No need for bump-bonding: cost ↓
- Area > 10x10 cm2 → enable O(1) m2 modules

Several design challenges:

- Large on-die variations, mismatch
- Yield
- Stitching layout rules
- Distribution of power supply
- Distribution of global control signals/references

Goals of R&D: find solutions and explore novel design techniques

L. Rota
Main specifications for Large Area MAPS development

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Threshold</td>
<td>140 e-</td>
<td>0.25*MIP with 10 μm thick epi layer</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>7 μm</td>
<td>In bend plane, based on SiD tracker specs</td>
</tr>
<tr>
<td>Pixel size</td>
<td>25 x 100 μm²</td>
<td>Optimized for tracking (note: 25 x 50 μm²)</td>
</tr>
<tr>
<td>Chip size</td>
<td>10 x 10 cm²</td>
<td>Requires stitching on 4 sides</td>
</tr>
<tr>
<td>Chip thickness</td>
<td>300 μm</td>
<td><200 μm for tracker. Could be 300 μm for EMCal to improve yield.</td>
</tr>
<tr>
<td>Timing resolution (pixel)</td>
<td>~ ns</td>
<td>Bunch spacing: C^3 strictest with 5.3->3.5 ns; ILC is 554 ns</td>
</tr>
<tr>
<td>Total Ionizing Dose</td>
<td>100 kRads</td>
<td>Total lifetime dose, not a concern</td>
</tr>
<tr>
<td>Hit density / train</td>
<td>1000 hits / cm²</td>
<td></td>
</tr>
<tr>
<td>Hits spatial distribution</td>
<td>Clusters</td>
<td>Due to jets</td>
</tr>
<tr>
<td>Balcony size</td>
<td>1 mm</td>
<td>Only on one side, where wire-bonding pads will be located.</td>
</tr>
<tr>
<td>Power density</td>
<td>20 mW / cm²</td>
<td>Based on SiD tracker power consumption: 400W over 67m²</td>
</tr>
</tbody>
</table>

L. Rota

25 x 100 μm²
ECal performance same as 50 x 50 μm²

SiD Tracker and the ECal

RDC3 talks today
A. Habib & C. Vernieri
Model of longitudinal structure of SiD ECAL

Total = 27 X_0

Minimize sampling gap to achieve optimal Moliere radius (14 mm) & shower separation

20 layers of 2.243 mm W + 1 mm sampling gap
10 layers of 4.486 mm W + 1 mm sampling gap

20 GeV γ average profile

Incident Particle

HCAL
10 GeV Shower in 25 x 100 μm²
Resolution vs. Energy (hits & mips)

Resolution vs. Energy
(hits & mips)

Pixel hit threshold = 1 keV = 270 e’s

Mip threshold = 0.1 MeV

Note - mip is counted once, in pixel it first passes through.

10 GeV
5.8%

10 GeV
3.4%

16.4% / √E + 2.0%
9.8% / √E + 1.1%
Example of hit distribution in a MAPS

- Most hits isolated
 - Single hit cluster
 - Multiple hit clusters
 - Often single mip, or no mip
 - Counting clusters should reduce hit fluctuations

Cluster definition: Collection of hits in contact

- Hits no Mips
- Mips

Cluster Size for Mip Counts

- 10 GeV γ

Cluster Size

Yellow - hit w/o mip
Others - 1 or more mips

Hitmap Definition:
Collection of hits in contact

Event = 22
Layer = 10
Cl. Count = 2
Cl. Mips = 1
Image Count = 24
Image Mips = 17

Cluster Num. = 405
y0 = 16.5
z0 = -1.0

mip = e± > 0.1 MeV
hit = > 1 keV or 270 e's

Yellow - hit w/o mip
Others - 1 or more mips
Resolution vs. Energy (hits/clusters/mips)

Resolution vs. Energy (hits/clusters/mips)

10 GeV
- 5.8% for hits
- 4.9% for clusters

Pixel hit threshold = 1 keV = 270 e’s

Simple cluster performance is better than hit counting.

10 GeV
- 16.4% / $\sqrt{E} \oplus 2.0\%$
- 13.7% / $\sqrt{E} \oplus 2.0\%$
- 9.8% / $\sqrt{E} \oplus 1.1\%$
All Clusters are not the same

- Some clusters are numerous mips.

Cluster size 15
Either few mips
Or Many mips

$e^+ > 0.1$ MeV for only 1 mip
Mips/cluster 10 GeV γS - 2000 showers

- Size 1 clusters
- Size 2 clusters
 $W_t = a \exp(-bR) + c$
 $a, b, c = f(ClSz)$
- Size 3 clusters
- Size 4 clusters
- Size 5 clusters
 Large mip clusters near shower axis
- Size 6 clusters
Apply weight to clusters:

\[\text{RadWt} = a \exp(-bR) + c \]

\[a, b, c = f(\text{Clsiz}) \]
Resolution vs. Energy (hits/clusters/mips)

Resolution vs. Energy (hits/clusters/mips) & weighted clusters.

10 GeV 4.9%

10 GeV 4.3%

Cluster properties weighting improves performance.
Neural net cluster weighting based on

1. Three input parameters = Cluster size, layer num, shower radius
2. Five input parameters = Add cluster length in Y and Z

TRAINING - 10 GeV
2000 events
2,502,000 hits
1,878,999 clusters

Store model to file
model.save('modelRegression%s.h5'%Efact)
model.summary()

Book methods
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:
V:VarTransform=D,G:FilenameModel=modelRegression%s.h5:FilenameTrainedModel=
trainedModelRegression%s.h5:NumEpochs=20:BatchSize=32%(Efact,Efact)
Weighted function vs. TMVA neural net (10 GeV γs)

\[\text{Weighted function: } Wt = f(Clsz, R) \]

\[\text{TMVA function: } \text{TMVA mips} = f(Clsz, Layr, R) \]

\[\text{TMVA function: } \text{TMVA mips} = f(Clsz, Layr, R, dY, dZ) \]

- Wt = 4.3%
- TMVA mips = 4.4%
- TMVA mips (with additional parameters) = 4.3%

Gaussian fit for unweighted clusters: 4.3%
Results: Energy Resolution

<table>
<thead>
<tr>
<th>Energy</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>clusters</td>
<td>13.8%</td>
<td>10.1%</td>
<td>6.6%</td>
<td>4.9%</td>
<td>3.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>wtd clusters</td>
<td>12.3%</td>
<td>8.8%</td>
<td>5.7%</td>
<td>4.4%</td>
<td>3.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>3 par TMVA</td>
<td>12.6%</td>
<td>9.5%</td>
<td>6.2%</td>
<td>4.4%</td>
<td>3.4%</td>
<td>2.2%</td>
</tr>
<tr>
<td>5 par TMVA</td>
<td>12.8%</td>
<td>9.4%</td>
<td>5.9%</td>
<td>4.3%</td>
<td>3.1%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

- Weight fits for 2, 10, 50 GeV; extrapolated for 1, 5, 20 GeV.
- NN optimized for each energy
- 3 par = cluster size, layer, radius
- 5 par = cluster size, layer, radius, dY, dZ

Weighted clusters already achieve performance of this neural net.
Transverse Shower Structure

10 GeV
Multi-shower of SiD MAPS compared to SiD TDR

$40 \text{ GeV } \pi^0 \rightarrow \text{two } 20 \text{ GeV } \gamma$'s

SiD TDR hexagonal sensors
13 mm2 pixels

New SiD fine pixel sensors
25 µm x 100 µm pixels
Shower Image, Event 7

- Tracker Charged, p>1.0 GeV
 E_max = 24.4 GeV
 num = 13

- MC Gamma, E>0.5 GeV
 E_max = 9.7 GeV
 num = 11

h \rightarrow Zh
Z \rightarrow jets
h \text{ invisible}
γ’s in jet / SiD baseline ECal (13mm² pixels)

- 13 mm² pixels of analog SiD ECAL
- 5000x granularity with digital MAPS ECal
- Upcoming integration into SiD simulation will define scale of improvement?
Conclusion

❖ Application of monolithic active pixel sensors (MAPS) to SiD digital ECal offers excellent performance:
 ❖ Energy measurement
 ❖ Transverse energy containment & multiple shower separation
❖ The well defined structure of EM showers allows simple algorithmic improvement in energy measurement.
❖ Neural nets have been studied to improve energy measurement:
 ❖ They have not yet provided improvement over the “informed” algorithm.
❖ Future - simulation of full SiD detector with high granularity of MAPS ECal