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Background
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Phase II upgrade HL-LHC CMS
• 5 times improved luminosity (radiation)
• 7 times higher interaction rate (~3Ghit/cm2)
• Raw data generation of 40ZB/yr
 

Pixel detector R&D effort for replacement for Phase III
Technology 65nm CMOS 28 nm  CMOS
Pixel size 50x50 𝛍m2 25x25 𝛍m2

Pixels 394x400 = 157.6k 788x800 = 0.63M
Detection threshold ~1000e- ~500e-
Hit rate < 3GHz/cm2 < 3GHz/cm2

Trigger rate 1MHz 40MHz (?)
Digital buffer 12.5 𝛍s (?) 
Readout data rate 1-4 links @ 1.28Gbps Photonic link @ 30-100 Gbps
Radiation tolerance 500Mrad at -15oC 1Grad at -15oC
Power 1 W /cm2 1 W /cm2



Prototype ROIC for our R&D proof of concept
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First Prototype implementation:
• Analog frontend without ML/AI backend
• The pixel prototype is designed in HPC+ 28nm  
• It contains an array of 16x32 pixels
• Pixel size are 25µm x 25µm each
• The ASIC is 1.5mm2

ROIC Implementation end goal:

à Low power, low noise preamplifier 
with a leakage compensation 
technique  (for radiation)

à A low power 40MSPS synchronous 
comparator architecture with auto-
zero capability to create an in-pixel 
ADC

à On chip data reduction capability using 
AI/ML techniques



TOT vs. Synchronous
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• Insensitive to pile up

• Capable of accurately 
resolving hits in 
subsequent bunch 
crossing

• Synchronous approach 
ensure simple ML 
algorithm

• Enables low power 
combinatorial 
approach for digital 
implementation



Front-end pixel architecture
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• 25µm  × 25µm pixel sizes
• Power about ~6.25uW [majority of it used at the 

front-end]

• AC coupled 40MSPS in-pixel 2-bit flash ADC 
-> insensitive to pile-up

• 2-bit ADC:
à version 1: Single ended
à version 2: Differential

• Charge injection cap array ( 2 or more) for 
injecting different signals across the pixel matrix 
for testing Neural network performance

• Auto zero in every pixel for threshold correction

• Also exploring Non-AZ options

CSA 2-bit flash ADC



Charge Sensitive Amplifier (1)
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L. Gaioni, D. Braga, D. C. Christian, G. Deptuch, F. Fahim, B. Nodari, L. Ratti, V. Re, and T. Zimmerman,
 “A 65 nm cmos analog processor with zero dead time for future pixel detectors,” 
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 845, pp. 595–598, 2017.

• Dynamic range  64aC – 2.5fC 
400e- to 13Ke-
•  Regulated Cascode core amplifier design
• Active transistor feedback  resistor 
(Mncc1)     
    à Large signals behaves as a constant 
current source
    à Small signals RF = 1/gm
• Leakage current compensation structure 
inspired by IFCP65 
à compensation up to 50nA
Uses a differential amplifier Mpcc1 and 
Mpcc2 with a tail current greater than 
the sum of detector leakage current and 
the bias current of Mncc2 (Id)



Charge Sensitive Amplifier (2)
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Parameters value unit

Power 3 𝜇W

ENC 61 e-

Charge sensitivity 40.85 𝜇V/e-

Phase Margin 65 degree

Dynamic Range 13 ke-

QBF 12 e-



ADC Comparator (1)
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Reset Phase:
Blue path activates during the first 12.5ns of the period. 
The circuit is configured as a voltage follower to sample 
and store DC operating point, offset and noise.

Comparison Phase:
Brown path activates during the second half of the period. 
The circuit is configured as a high voltage gain structure, 
the threshold and signal are injected and compared.

Two architectures implemented for comparison:
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Comparator (2)

Result v1 v2 unit

Power 0.5 1 𝜇W

Threshold 
Dispersion

40 45 e-

Area 17.5 30 𝜇m2

Auto-zero yes yes

Dead time 250 0 ps



Pixel Performance
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Result v1 v2 unit comments

Power 3.7 5.2 𝜇W Per pixel

Total 
Equivalent 
Charge
Dispersion

90 100 e-

Includes:
• ENC
• Qth
• Baseline 

fluctuation
• kickback

Min 
Threshold

430 475 e- 4.75 σ

Analog 
Area

169 211 𝜇m2

Includes:
Equivalent Noise Charge: ENC
Static Offset: QTH
Dynamic Offset Fluctuation: QBF

𝐸𝑁𝐶! + 𝑄"#! + 𝑄$%!

• 4x improved granularity 
• 2.5x power reduction  
• 2.5x improvement in threshold detection
• Insensitive to pile-up



Early measurement results
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S-curve extracted for 3-bit on single pixel 
• single ended version
• 200 measurement by steps of 2e- 
• No sensor capacitance connected to the ROIC
• Sampling threshold at 850e-, 1590e- and 3060e-

S-curve extraction for differential structure ongoing
Threshold dispersion characterization ongoing

850e- 1590e- 3060e-

Single 
ended

Diff

Charge 
sensitivity

50uV/e- 50uV/e-

Standard 
deviation

25-30e- NA

Threshold 
dispersion

NA NA



Ongoing Effort : Smart Pixel ROIC Implementation
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Co-design of digital classifier:
 à Jieun Yoo talk (11/8/23 2.35PM) 
Front-end neural network filtering implemented in a silicon pixel detector

• We are taping out two 8x32 smart pixel matrices soon
• Analog frontend pixels tightly connected to a fully combinatorial digital classifier

à Only draws power when a charge cluster is created
à 300uW of power for 256 pixels 
à ~1uW/pixel to ensure our goal of 1W/cm2

• Classifier allows to reject 75% of the clusters
à Reducing power required for data transfer

Reprogrammable 
weights & biases

https://indico.slac.stanford.edu/event/8288/contributions/7654/


(1) Future Effort : ASIC Development Roadmap for Smart Pixel
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Neuromorphic Front-End Solution
Ø Event-driven front-end (ongoing)
Ø Algorithm development of digital SNN for a cluster of pixels (completed by ORNL)
Ø Implementation of the SNN into digital hardware (Fermilab)
Ø Implementation of the SNN into analog hardware (Sandia)



(2) Future Effort : ASIC Development Roadmap for Smart Pixel

11/7/23 CPAD 2023                                                             FERMILAB-SLIDES-23-366-CMS14

Analog AI implementation 
Ø Implement analog classifier counterpart for a cluster of pixels
Ø Characterize power/area efficiency gain 
Ø Develop ROIC prototypes:

• SRAM based solution
• Floating Gate based solution
• Beyond CMOS ReRAM based solution

Analog NN model with SRAMNN model

Analog NN model with ReRAM



(3) Future Effort : ASIC Development Roadmap for Smart Pixel
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Investigate 3D integration – 
pixelated layer for data filtering; 2nd layer for featurization

100𝜇m

20𝜇m

• Highly parallel processing enabled by vertical 
integration

• Low power data transfer 
• Reduced clock speed
Enabling real time determination of physics 
information (x,y,θ,ɸ and uncertainty)


