Design Updates for HP-SoC:
A very high Channel Density Waveform Digitizer with sub-10 ps resolution

November 9, 2023
CPAD Workshop

Jennifer Ott
jeott@ucsc.edu
Collaborators

SCIPP / UCSC:

Nalu:
C. Chock, L. Macchiarulo I. Mostafanezhad R. Perron D. Uehara G. Uehara
Motivation

• Precision timing – and 4D tracking – is increasingly important for high-energy and nuclear physics experiments

• Large-scale detector applications require large numbers of segments: depending on the experiment and detector layout, the density of readout channels is high

• Design of fast readout electronics with an acceptable power consumption and cost level is an ongoing challenge

• Time-to-Digital Converter (TDC) and time-over-threshold solutions provide only an indirect estimate of integrated charge and are adversely impacted by effects such as time walk, baseline wander, which need to be corrected

➢ Implementation of on-chip waveform digitization at the GSample level could address these concerns
HP-SoC: specifications and targets

- 65 nm TSMC CMOS
- Input preamplification handling fast current-based sensors (~100 ps rise times)
- Very large integration (100+ channels) with modular tileable, scalable structure
- Timing resolution (jitter) better than 10 ps, down to 5 ps
- Waveform digitization of at least 10 Gs/s, allowing for pulse shape discrimination
- Autonomous chip triggering and storage virtualization
- On-chip feature extraction and multi-channel data fusion
HP-SoC v1

• First prototype developed, fabricated and tested through SBIR Phase-1 funding (DOE-SC0021755)
• 4 channels, sampling array and conversion logic, digital control but limited functionality
• Focus on characterization on 1-ch transimpedance amplifier and gain stage with LGAD sensor

• Reached 600 ps rise time and ~45 ps jitter: main issue was the lower than expected output signal amplitude = front-end gain

TWEPP 2022: https://indico.cern.ch/event/1127562/contributions/4904727/

Co-funded by FY23 EIC/Jefferson Lab Generic R&D grant

- Optimized front-end design informed by the testing results from the initial prototype chiplet
 - Improved TIA and gain stage: higher signal amplitude

- Independent front-end amplifier to permit separate evaluation of the analog performance

- Full digitizer
- New internal discriminator
- On-chip autonomous operation via self-triggering

- Chip submitted in May, received in September 2023
• Assuming 0.4 pF input capacitance
• Simulation before any parasitics
• In order to achieve timing resolution below 30 ps, it is likely necessary to go to thinner sensors (Landau distribution of charge deposition can only be reduced in this way)

<table>
<thead>
<tr>
<th>TIAv1+Gain v1</th>
<th>TIAv2 + follower</th>
<th>TIAv2 + Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain (signal/freq=0)</td>
<td>6.48/13 (kOhm)</td>
<td>6.50/9.9 (kOhm)</td>
</tr>
<tr>
<td>Rin (signal/freq=0)</td>
<td>872/1.4k (Ohm)</td>
<td>177/246 (Ohm)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>228MHz</td>
<td>356MHz</td>
</tr>
<tr>
<td>Rise time</td>
<td>649ps</td>
<td>627ps</td>
</tr>
<tr>
<td>Output bias</td>
<td>357mV</td>
<td>359mV</td>
</tr>
<tr>
<td>Noise (5 GHz)</td>
<td>0.093mV</td>
<td>0.162mV</td>
</tr>
<tr>
<td>Current</td>
<td>1.63mA</td>
<td>2.4mA</td>
</tr>
<tr>
<td>Vpeak (from Base)</td>
<td>92mV</td>
<td>92.3mV</td>
</tr>
<tr>
<td>Estimated jitter (assuming 1 mV total noise)</td>
<td>8.8ps</td>
<td>8.5ps</td>
</tr>
</tbody>
</table>

50 µm (~10 fC signal)

<table>
<thead>
<tr>
<th>TIAv1+Gain v1</th>
<th>TIAv2 + follower</th>
<th>TIAv2 + Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain (signal/freq=0)</td>
<td>3.05/13 (kOhm)</td>
<td>3.16/9.9 (kOhm)</td>
</tr>
<tr>
<td>Rin (signal/freq=0)</td>
<td>503/1.4k (Ohm)</td>
<td>117/246 (Ohm)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>228MHz</td>
<td>356MHz</td>
</tr>
<tr>
<td>Rise time</td>
<td>348ps</td>
<td>332ps</td>
</tr>
<tr>
<td>Output bias</td>
<td>357mV</td>
<td>359mV</td>
</tr>
<tr>
<td>Noise (5 GHz)</td>
<td>0.093mV</td>
<td>0.162mV</td>
</tr>
<tr>
<td>Current</td>
<td>1.63mA</td>
<td>2.4mA</td>
</tr>
<tr>
<td>Vpeak (from Base)</td>
<td>43.3mV</td>
<td>44.9mV</td>
</tr>
<tr>
<td>Estimated jitter (assuming 1 mV total noise)</td>
<td>10ps</td>
<td>9.24ps</td>
</tr>
</tbody>
</table>

20 µm (~4 fC signal)
Power consumption estimate

- TIA (with gain): 2.24 mA
- Trigger: 0.720 mA
- Ramp: ~30 µA
- Comparator: 256x1 µA = 0.256 mA
- Total w/out clock and counter distribution: 3.25 mA
 - Ca. 3.3 mW (1 V op)
Waveform digitization

- Waveform digitization at 10 GS/s (10-bit): allows digital baseline correction, constant fraction discrimination and other algorithms for improving jitter component of the timing resolution
- Simulated HP-SoC v2 output digitized waveforms with noise: estimated reduction from 13.7 ps (leading edge) to 5 ps

➢ Classification of digitized waveforms with machine learning?
HPSoCv2 evaluation board
Fabricated chip

- Initial shorting of wirebond heels to chip seal (metal frame) required adjustments to bonding wire and parameters!
Calibration with external injection

- After adjustment of transimpedance amplifier bias, signals of either polarity could be detected without reaching saturation
 - On chip, triggering is targeting only the expected signal polarity from p-type sensors
Calibration with external injection

- Signal linear up to $\sim 200 \text{ mV} = 100 \text{ fC}$
- Gain (at highest setting) is improved significantly compared to v1
- Rise times down to 450-500 ps!
Characterization with sensors

HPK AC-LGADs, 500 µm pitch
• 4x4 pad array, type C600, 50 µm thick, 300 and 450-µm pad size
 • Tested with laser and Sr-90 beta source
• 1 cm strip, 50 µm thickness, 50 µm metal width, type C600
 • Tested with laser, tests with source to be done soon
 • Noise: on the order of 2 mV – has not degraded significantly with larger strip sensor capacitance

Data acquired using GHz probe and oscilloscope connected to standalone TIA output – 3-4 channels are connected for full digitization, but were not read out yet
Characterization with sensors

• x-y scans of pad and strip sensors were conducted
• E.g. strip sensor: rise time 600-750 ps, jitter ~35 ps

• Beta source exposure of pad sensor (self-triggered): MPV 40 mV, rise time 550 ps, noise rms 1.8 mV
Digitizer testing

• So far operated only at Nalu with calibration input and/or supplied waveform
• Firmware development finished recently
 • Will be made available also at SCIPP for evaluation of the full system with sensor and multiple channels

• Initial testing of internal delay line, internal conversion clock generation and counter, comparator, ramp has been conducted
 • Functional bug in joint control of ramp and counter prevents full internal conversion
 • Planning to submit a corrected version of the chip immediately, at the end of the month

• Alternative approaches still allow majority of chip testing, including pedestal acquisition and synchronous wave acquisition & conversion

• Power consumption: 24 mW for 4 channels with full digitization + 1 additional TIA + clock. Adjustment not perfect yet – may reach closer to targeted 3.3 mW/channel
Conclusions

• The second revision of HP-SoC has been designed and fabricated, incorporating most of the functionality envisioned for the final implementation.

• Preliminary results from the first month of testing with both calibration inputs and sensors are encouraging:
 • Pre-amplification seems compatible with high performance readout of state-of-the-art LGAD sensors.
 • Most digitizer modules perform according to the specifications.
 • Functional errors precluding full architecture assessment are being addressed with additional testing of present and old prototyping and new fabrication.

• HP-SoC v3: 9-channel module – pending funding decisions
 • To utilize results from previous front-end and digitizer evaluation.
 • Optimization of feature extraction mechanisms based on acquired data.
 • Channel fusion information based on experimental data from multiple channels.