2023 Coordinating Panel for Advanced Detectors (CPAD) Workshop

Nov. 7-10, 2023 | SLAC National Accelerator Laboratory

RDC4 | Readout and ASICs ID: 77

CRYO ASIC

A System-on-Chip (SoC) for Charge Readout in the nEXO Experiment

Aldo Pena Perez on Behalf of SLAC TID-ID ICs Dept. and nEXO Collaboration

Thursday, 09 Nov 2023 | aldopp@slac.stanford.edu

SLAC | TID TECHNOLOGY INNOVATION DIRECTORATE

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Agenda

1. nEXO

A brief glance at the experiment

2. CRYO ASIC

System-on-chip (SoC) for charge readout

3. Functional verification at ~165K

SLAC test bench system and measurement results

4. Ongoing work and conclusions

LXe setups and charge readout prototype for nEXO

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

1

nEXO

A brief glance at the experiment

nEXO Experiment

A brief glance to the Experiment

nEXO

Source: https://nexo.llnl.gov/

- **nEXO** [1] is designed as the successor of EXO-200 [2]
- **Mission**: Investigate neutrinoless double-beta (0vββ) decay
- **Core detector:** Single-phase 5-tonne Liquid Xenon (LXe) Time Projection Chamber (TPC)
- Operating temperature: ~165 K
- Potential site: SNOLAB, deep underground research lab located in Vale's Creighton mine near Sudbury, Ontario Canada
- **Location:** 2 km underground, providing protection from cosmic radiation

a cylindrical copper vessel, a sphere of refrigerant, and a water tank

Crafting a specialized cryogenic ASIC close to the detector

- Cold electronics vs warm electronics \rightarrow Improve noise & facilitates System-on-Chip (SoC) integration
- Enhanced energy resolution \rightarrow Low-noise, highly linear charge amplification
- **nEXO's low radiopurity** \rightarrow Reduce at minimum external components
- Waveform digitization \rightarrow A-to-D conversion with digital data streaming
- Location of digitization → Improves signal integrity and enables channel multiplexing
- Low power consumption → ASIC approach eliminates the need for a heat sink
- SoC ASIC solution → Effectively reduces system complexity

TPC Experiment	nEXO				
CMOS process	130nm				
Supply voltage	2.5V (2V, 1V internal)				
Input capacitance	~ 20pF - 30pF				
Anti-aliasing filter	5 th order Bessel architecture				
Peaking times	0.6us, 1.2us, 2.4us, 3.6us				
Gain settings	6.0X (57.2mV/fC)	3.0X (28.6mV/fC)	1.5X (14.3mV/fC)	1.0X (9.6mV/fC)	
Max. input charge	25fC	50fC	100fC	150fC	
Noise	< 150e- @ 3.0X and 1.2us				
ADC	12-bit 2MSPS / CH				
INL and DNL	±1LSB				
Power Consumption	< 15mW / CH (32-CH version)				
Temperature	LXe ~165K (-113ºC)				

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

2

CRYO ASIC

System-on-Chip (SoC) for charge readout

CRYO ASIC [2]-[4]

Key features

- System-on-Chip (SoC) architecture
- Linear charge preamplification with channel multiplexing, A-to-D conversion and digital data streaming
- On-chip supply regulation
- 64 inputs / 2 digital outputs
- Fully programmable:
 - 4 gain settings and 4 shaping times
 - Single and dual polarity signal
- Small footprint: 7mm x 9mm

CRYO ASIC [2]-[4]

Key features

- System-on-Chip (SoC) architecture
- Linear charge preamplification with channel multiplexing, A-to-D conversion and digital data streaming
- On-chip supply regulation
- 64 inputs / 2 digital outputs
- Fully programmable:
 - 4 gain settings and 4 shaping times
 - Single and dual polarity signal
- Small footprint: 7mm x 9mm

CRYO ASIC [2]-[4]

Key features

- System-on-Chip (SoC) architecture
- Linear charge preamplification with channel multiplexing, A-to-D conversion and digital data streaming
- On-chip supply regulation
- 64 inputs / 2 digital outputs
- Fully programmable:
 - 4 gain settings and 4 shaping times
 - Single and dual polarity signal
- Small footprint: 7mm x 9mm

Chip Photograph R&D Prototype | 7mm x 9mm

CRYO ASIC [2]-[4]

Key features

- System-on-Chip (SoC) architecture
- Linear charge preamplification with channel multiplexing, A-to-D conversion and digital data streaming
- On-chip supply regulation
- 64 inputs / 2 digital outputs
- Fully programmable:
 - 4 gain settings and 4 shaping times
 - Single and dual polarity signal
- Small footprint: 7mm x 9mm

C TECHNOLOGY

• Fully functional in LXe with performance close to requirements

IIVIV CIRCUIYS

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

3

Functional verification at ~165K

SLAC test bench system and measurement results

Functional verification at ~165K – SLAC test bench system

Cryogenic test bench setup

TECHNOLOGY INNOVATION DIRECTORATE

Front-End Motherboard (FEMB)

• Allows the characterization of x2 ASICs simultaneously

Cryostat

- Cryostat Testy System (CTS) designed by Michigan State University
- Chip characterization at room and ~165K (cold gas mode)

DAQ system

- KCU105 Commercial FGPA based board
- Custom interface board to drive FEMB
- Custom ~3m high-speed SAMTEC cable for data and control
- Python-based GUI software, part of a ROGUE library [6]

Verification

FEMB system	300 K	~165 K
ASIC initialization	\checkmark	\checkmark
On-chip supply regulation (LDOs)	\checkmark	\checkmark
Reference generation of ADC	\checkmark	\checkmark
Settings and configuration through SACI	\checkmark	\checkmark
Data communication (CRYO ASIC - FPGA)	\checkmark	\checkmark
LVDS TXs and RXs	\checkmark	\checkmark
Analog front-end response/settings	\checkmark	\checkmark
ADC section	\checkmark	\checkmark
Back-end operation	\checkmark	\checkmark
Full-chain of CRYO ASIC	\checkmark	\checkmark

• Initial R&D prototype strongly mitigated risk for the project: Full functionalities demonstrated. Initial chip characterization of CRYO ASIC shows performance close to requirements

Pulse response at gain 1.5X, nominal speed (2 MSPS)

Pulse response with single and dual polarity at gain 1.5X, nominal speed (2 MSPS)

ASIC-0 | Single Polarity

- Specific groups of channels (x10) are pulsed on purpose
- Each set is configured with a different peaking time and single polarity
- Baseline reference level set to lower ADC range
- Remaining channels are masked (black areas)

ASIC-1 | Dual Polarity

- Specific groups of channels (x10) are pulsed on purpose
- Each set is configured with a different peaking time and dual polarity

CIRCUIYS

- Baseline reference level set to middle ADC range
- Remaining channels are masked (black areas)

TECHNOLOGY INNOVATION DIRECTORATE

Remarks

350

300

250

b 200

D 150

100

50

0

0.6

- R&D prototype preliminary tested at ~165K
- Front-end (FE) settings:
 - Gain 1.5X in collection mode
 - Load at Cdet = 39pF
- Measured ENC shows good agreement with simulations
- Chip testing with higher gains is ongoing

Even Channels

• Results will be compared to simulations

Simulation

3.6

2.4

Peaking Time [us]

CH24

SLAC TECHNOLOGY

1.2

CH20 CH22

2023 Coordinating Panel for Advanced Detectors (CPAD) Workshop

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

4

Ongoing work and conclusions

LXe setups and charge readout prototype for nEXO

Ongoing work

LXe setups and charge readout prototype for nEXO

UCSD System

- System-1: Cold board (single ASIC) + ePix DAQ
- System-2: FEMB (dual ASIC) + Commercial FPGA
- Cryostats: LXe capable (cooled by HFE bath) & environmental chamber
- Goal: ASIC performance, noise, and testing of flex cable for data communication
- Testing with Si-Caps and reduced number of external caps
- Thermal analysis (camera setup)

• Demonstrated full ASIC operation at room temp and LXe environment

Stanford System

- System: Charge readout (single ASIC) + ePix DAQ (operational)
- Cryostat: LXe capable (cooled by HFE bath)
- Goal: Measure LXe ionization with full charge readout prototype (CRYO ASIC + charge tiles)
 47. Status and Development of nEXO's Charge
- Capacitance measurement

- **CRYO ASIC is a SoC solution** designed as the charge readout for nEXO
- Established various cryogenic systems for chip characterization (SLAC/UCSD/Stanford)
- Fully functional R&D prototype at ~165K in cold gas and LXe environments
- Mitigated several risks in the design
- Preliminary performance aligns with simulations (further testing at in progress)

References

- 1. S. Al Kharusi, et. al. (2018), nEXO Pre-Conceptual Design Report, [Online]. Available: arXiv:1805.11142
- 2. M. Auger, et al., JINST 7, P05010 (2012), The EXO-200 detector, part I: Detector design and construction, [Online]. Available: arxiv.org/abs/1202.2192
- 3. A. Pena-Perez, et al., "CRYO: A System-on-Chip for Charge Readout in the nEXO Experiment," 2022 Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (NSS/MIC/RTSD'22)
- 4. A. Pena-Perez, et al., "CRYO: A System-On-Chip ASIC for Noble Liquid TPC Experiments," 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC'20). https://doi.org/10.1109/NSS/MIC42677.2020.9507812
- 5. A. Gupta, et al., "Read-Out Architecture of CRYO System-on-Chip ASIC for Noble Liquid TPC Detectors," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS'20). https://doi.org/10.1109/MWSCAS48704.2020.9184452
- 6. ROGUE, https://github.com/slaclab/rogue.Accessedin05/05/2020

Thank you for your kind attention! Q&A and Comments

aldopp@slac.stanford.edu

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

BACK-UP SLIDES

Conditions: ASIC in test mode for ADC verification, nominal speed (2MSPS)

LAC TECHNOLOGY INNOVATION DIRECTORATE TID-ID INTEGRATED DEPARTMENT

2023 Coordinating Panel for Advanced Detectors (CPAD) Workshop

Power spectral density (PSD) at gain = 1.5X, collection

CRYO ASIC R&D Prototype

CRYO ASIC Architecture: Front-End Channel

Front-End (FE) Channel

Key features

- Preamplifier with CMOS reset and pole-zero cancellation
- On-chip leakage compensation (-3.2nA ≤ Ileak ≤ 300pA)
- On-chip pulser system with programmable 10-bit DAC
- Effective linear charge amplification (N)
- 5th Order Bessel filter
 - Avoids aliasing and optimizes SNR
 - Flat group delay (low distortion)
 - Short impulse response with no ripples
- Baseline Holder (BHL) with adjustable level (bbase, btrim)
 - Global coarse and local fine tuning
- 4 gain settings (g0 and g1) and 4 peaking times (t0 and t1)
- Highly programmable through SACI

CRYO ASIC Architecture: Bessel Filter

5th - Order Bessel

Key features

- Avoids aliasing and optimizes SNR •
- Flat group delay (low distortion) ٠
- Short impulse response with no ripples ٠
- Programmable peaking times (t0 and t1) ٠

Noise Coeff.	5 th Semi-Gaussian	5 th Bessel
a _w	0.96	0.98
a _f	0.52	0.52
a _p	0.46	0.43

CRYO ASIC Architecture: Low Dropout (LDO)

Simulation at ~165 K - Transient response with change in load current				
Current Demand	Error [%]	Voltage drop [V]	Settling time [us]	
$\Delta I_{LH} = 0 \rightarrow 30 \text{ mA}$	0.8	1.003V-0.995V	6	
ΔI_{HL} = 30 mA \rightarrow 5 mA	0.5	1.001V-0.996V	7	
ΔI_{LH} = 5 mA \rightarrow 10 mA	0.1	1.000V- 0.999V	10	

Simulation at ~165 K - Loop stability (LSTB) / Noise / PSRR 2.5V supply voltage | 1.0V reference voltage (Vref) | 4.7uF external capacitor

Тетр	I _{Load}	RMS noise @100 KHz	PM	A _{dc} (dB)	PSRR @ 1MHz	PSRR @ 158 MHz
Room	40mA	2.70uV	> 90	30	-93 dB	-45 dB
nEXO	40mA	1.50uV	> 90	40	-93 dB	-44 dB

CRYO ASIC: Future development

Goal: Improve noise, power and radiopure

- * Based on results at LXe
- ** Based on transition board requirements

- Compatible with nEXO charge tile
- Benefit power dissipation distribution of front-end channels and ADCs
- SUGOI protocol
 - It will replace SACI communication to reduce number of I/Os
- Additional improvements based on learnings from chip testing
 - Based on test results from cryogenic systems at SLAC, UCSD and Stanford

