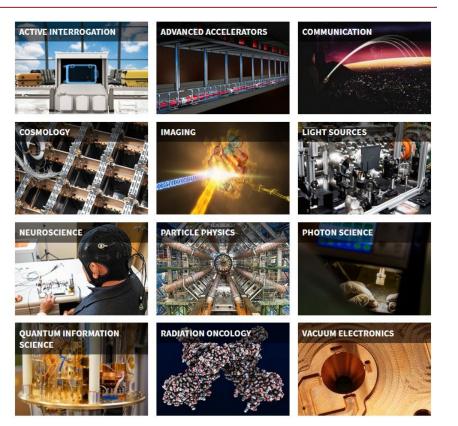
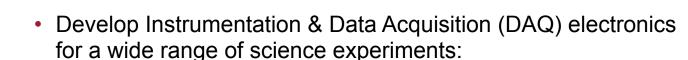
Rapid Firmware/Software Development with SLAC's Open-Source Tools: SURF, RUCKUS, and ROGUE

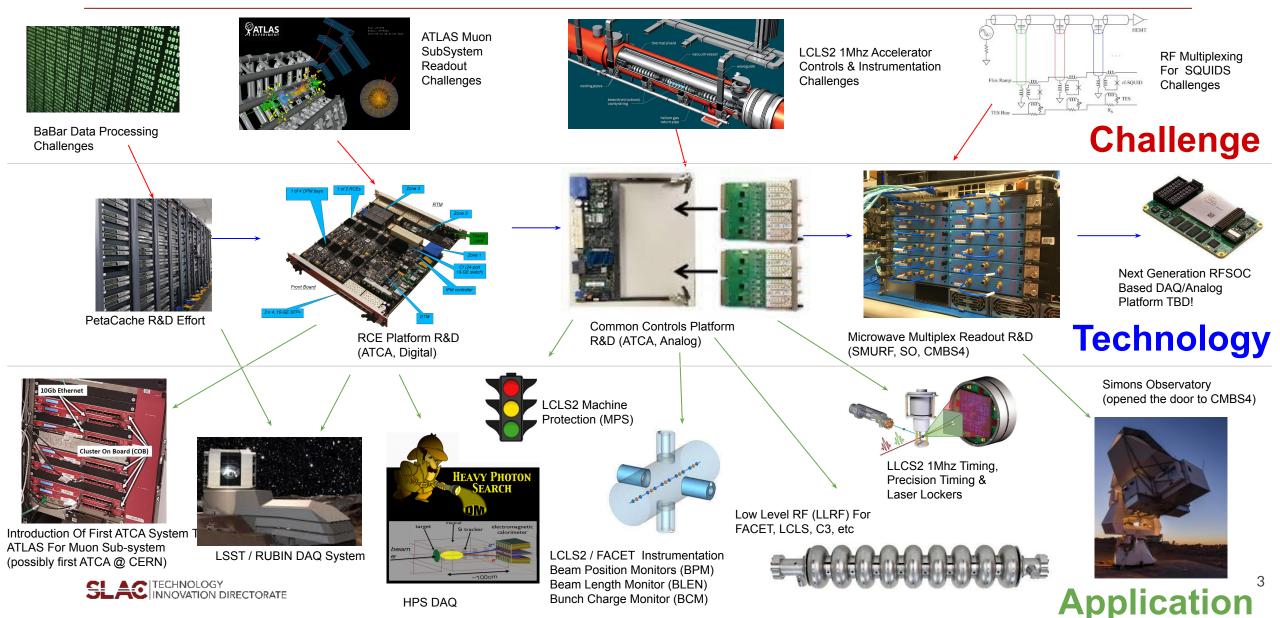
Ryan Herbst For SLAC TID Instrumentation November 9, 2023



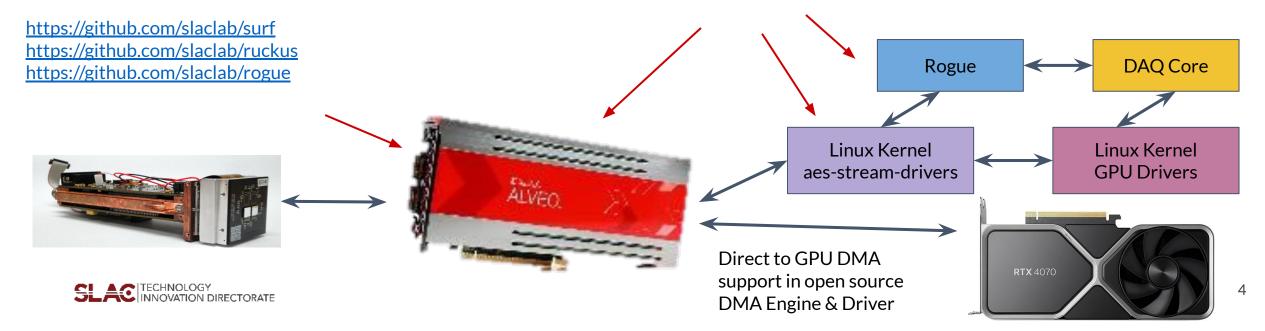
Who We Are And What We Do

- TID-ID has broad expertise in detector and instrument creation:
 - Sensor design and fabrication
 - Integrated circuit design
 - Micro packaging and interconnects
 - Advanced analog & digital electronics
 - High-performance, high-density FPGA design
 - RF DSP processing in FPGAs
 - Large-scale system integration
 - Low-latency AI inference in FPGAs
 - High-rate data collection & processing
 - Firmware defined radio
 - QIS materials research

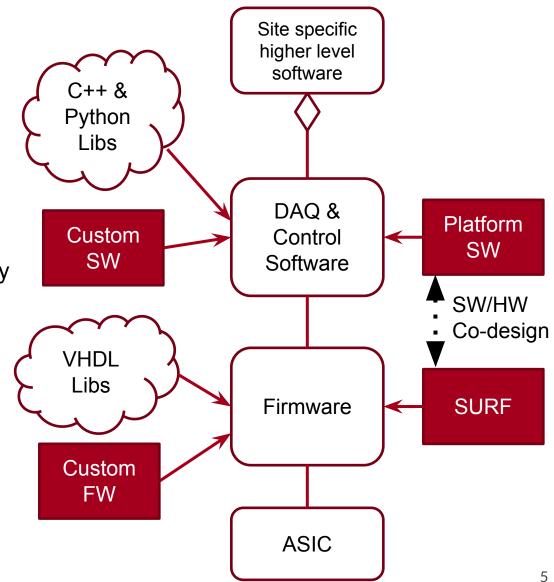




- HEP: ATLAS, CDMS, ProtoDUNE, HPS
- Photon Science: LCLS/LCLS-II X-Ray Cameras
- Others: LSST, CMB, LCLS-II beamline controls


Identifying Cross Application Synergies Leveraging Building Blocks To Enhance Science

SLAC TID-ID Is Committed To Open Source Libraries


- Reliable UDP (RUDP) Network offload engine to support network attached devices (NAT)
- High bandwidth synchronous (timing & trigger delivery) & asynchronous fiber protocols for front end readout (PGP2,PGP4)
- SLAC Ultimate RTL Framework (SURF):
 - Open source VHDL/Verilog framework for rapid FPGA/ASIC development using common generic, extensible libraries
 - Ruckus: Open source build system

- Open source DMA engine & associated driver for high bandwidth & high rate DMA transfer
 - Works both in amd64 & Zynq (SOC + RFSOC) platforms
 - Zero copy user space buffer mapping
 - Direct to GPU data transfer support
- Rogue: Open source Python/C++ hardware abstraction software for rapid readout development & test stand support
 - Easily integrated into back end DAQ systems
 - Balanced python (ease of use) and C++ (high bandwidth & high event rate) implementation

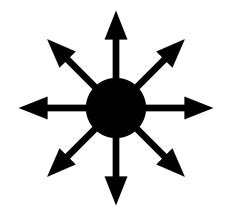
Maximize Firmware / Software Reuse With Common **Building Blocks With Standard Interconnects**

- Platform Software
 - Python/C++ framework to deploy custom readout systems •
 - Enables register level and stream communication
 - Enables local control & back end DAQ integration •
- SURF (SLAC Ultimate RTL Framework)
 - VHDL firmware library
 - Contains a library of protocols, device access and commonly • used modules
- Software and Firmware are tightly integrated providing firmware/software parallel development
 - Application firmware in HLS (High-Level Synthesis), • Model Composer, etc

SLAC Ultimate RTL Framework (SURF) Firmware

- https://github.com/slaclab/surf
- **HUGE** VHDL library for FPGA development
- Used in Xilinx FPGAs, Intel FPGAs and ASIC digital designs
- VHDL-based IPs for commonly implemented modules
 - Ethernet Library: (IPv4, ARP, DHCP, ICMP, UDP)
 - AXI4 Library:
 - AXI4-Lite Library: (Crossbar, AXI4-to-AXI4-Lite bridge, etc.)
 - AXI4 stream Library:
 - Device Library: (ADI, Micron, SiliconLabs, TI, etc.)
 - Synchronization Library: (Synchronize bits, buses, vectors, resets, etc)

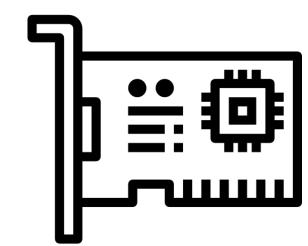
(Crossbar, DMA, FIFO, etc.)


(DMA, MUX, FIFO, etc)

- Wrapped Xilinx Library: (clock managers, SEM, DNA, IPROG)
- Serial Protocols Library: (I2C, SPI, UART, line-code, JESD204B, etc)
- New features and bug fixes on a weekly basis

Ruckus: RTL Build System

- <u>https://github.com/slaclab/ruckus</u>
- Open source, "Ruckus" is not an acronym
- **Compliments** the SURF/Rogue libraries
- Hybrid Makefile/TCL system
- Integrates the git repo into the RTL build
 - Provides the git hash at time of build as a readable register
 - Scripts to help with tag releasing and release note generation
- TCL helper function to help with add code
- Supports the following IDEs:
 - Vivado (AMD/Xilinx FPGAs)
 - Synopsys DC compiler (Digital ASICs)
 - Cadence Genus (Digital ASICs)
 - Fabulous (eFPGA)
- Able to reproduce the project's initial state with a "make clean; make"


Rogue Software

- <u>https://github.com/slaclab/rogue</u>, <u>https://slaclab.github.io/rogue/</u>
- Software tools for both rapid prototyping and experiment deployment
- "Rogue" is not an acronym
- Operates either in a **python/C++ hybrid** or **C++ only** mode
 - Higher level python for connecting the high performance C++ modules together
- x86-64, ARM32 and ARM64 support
- Able to run on Linux, MAC or windows
 - Windows and MAC requires use of released or custom docker containers
- Lots of ways to run the rogue software
 - 100% C++ only code
 - python script (non-GUI)
 - EPICS
 - Python GUI (e.g. PyQT, PyDM, etc)
- Actively maintained

PCIe FW/SW Framework

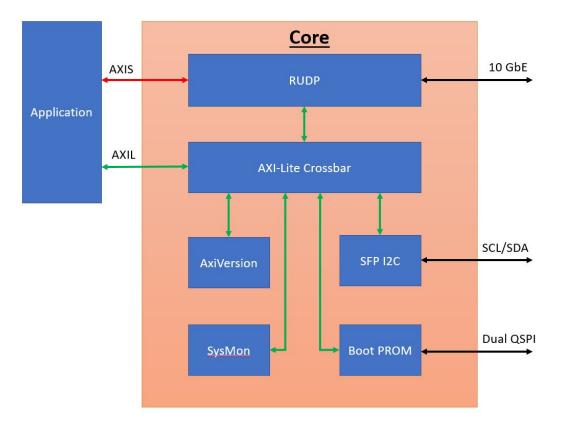
- <u>https://github.com/slaclab/axi-pcie-core</u> (Firmware/Software)
- <u>https://github.com/slaclab/aes-stream-drivers</u> (Linux Kernel Driver)
- Firmware framework for BAR0 AXI-Lite interface with up to 8 DMA lanes
 - 256 TDEST per DMA lane (up to 2048 destinations total)
- Provide a "common platform" firmware frame and software kernel driver for any Xilinx PCIe card
 - Common Xilinx Dev board support
 - AC701, KC705, KCU105, KCU116, VCU128
 - Common Xilinx Data Center Card support
 - U50, U55C, U200, U250, U280, C1100
 - Much more card support can be added as needed
- Demonstrate up to **113 Gb/s for large frames** (PCIe GEN3 x 16, 1MB frames)
- Demonstrate > 1MHz frame rate for small frame (<128B) without frame batching
- Support for direct data transfer to GPU or other commercial processors

Zynq Ultrascale+ FW/SW Framework

- <u>https://github.com/slaclab/axi-soc-ultra-plus-core</u> (Firmware/Software)
- <u>https://github.com/slaclab/aes-stream-drivers</u> (Linux Kernel Driver)
- Firmware framework for **AXI-Lite interface** with up to **8 DMA lanes**
 - 256 TDEST per DMA lane (up to 2048 destinations total)
- Provide a "common platform" firmware frame and software kernel driver for any Zynq Ultrascale+
 - Common Xilinx Dev board support
 - KV260 (non-RFSoC)
 - ZCU111 (RFSoC GEN1)
 - ZCU208 (RFSoC GEN3)
 - ZCU216 (RFSoC GEN3)
 - ZCU670 (RFSoC DFE)
 - RealDigital RFSoC4x2 (RFSoC GEN3)
 - Much more Zynq Ultrascale+ board support can be added as needed
- Inspired by the work done on axi-pcie-core
- Managed and maintained by TID-ID Electronics Systems Department

Future Libraries For Open Source

- SLAC Neural Network Library (SNL)
 - Talk by A. Dave in Tuesday RDC5 session
 - Currently opening up to interested collaborators
 - Interested in ways to integrated into HLS4ML
- RFSOC based RF processing libraries
 - Based upon work done for SMURF, AXION, Q-Bit readout, LLRF etc
 - Still cleaning up library structures
 - Potential for collaboration with QICK platform



Current Known External Collaborators And Customers

- CMS Muon Detector Team
 - CERN, Princeton, University of Minnesota Twin Cities, Notre Dame, U. Virginia
- SparkPix-RT digital ASIC
 - ANL
- Altiroc 1 Development
 - CERN
 - Annuaire IN2P3
- Cosylab
 - Medical device applications
- Belle-2 & general KEK
 - University of Hawaii
- Other SPP partners
- Other silent users

Getting Started: Development Board Example

- Question: How can I get started?
 - Answer: We provide a **working example** that someone can **copy and modified**
- <u>https://github.com/slaclab/Simple-10GbE-RUDP-KCU105-Example</u>
- <u>https://slaclab.github.io/Simple-10GbE-RUDP-KCU105-Example/</u>

IEEE Real Time Conference: SURF Workshop/Tutorial

- 24th IEEE Real Time Conference
 - ICISE, Quy Nhon, Vietnam
 - April 22-26, 2024
 - <u>https://indico.cern.ch/event/940112/</u>
- Abstract submissions are now open.
 - **Deadline: 2 Dec 2023, 11:59**
- Pre-Conference Program: 4 workshop/tutorials will be held
 - Cocotb
 - SURF
 - FABulous eFPGAs
 - Open-source ASIC Design (Skywater, Caravel)

