Dual Readout Calorimetry

Bob Hirosky and Grace Cummings
for the Calvision Team

CALVISION co-PIs
Alberto Belloni
Chris Tully
Sarah Eno
Bob Hirosky
Sergei Chekanov
Steve Magill
Nural Akchurin
Harvey Newman
Ren-Yuan Zhu
Jim Hirschauer
Hans Wenzel
Jianming Qian
Bing Zhou
Junjie Zhu
Andreas Jung
Marcel Demarteau
Phil Harris
Jim Freeman
Shuichi Kunori
The next international collider will most likely be an e+e- collider, Higgs factory with capabilities of numerous precision measurements at the EW scale.

Jet energy resolution is a key benchmark of e+e- detector performance

- eg, Need calorimeters w/ $\Delta E/E \sim 3-4\%$ for jets ~ 100 GeV to separate hadronic W’s Z’s
- Very hard to achieve with traditional calorimetry, having HCAL resolution $\sim 50%/\sqrt{E}$

Complementary approaches to better calorimetry:

- High granularity
- Dual Readout (DR)
The next international collider will most likely be an e+e- collider, Higgs factory with capabilities of numerous precision measurements at the EW scale.

High resolution EM calorimetry equally important, eg

- Unexpected, even invisible, Higgs decay
- Precision W/Z-boson studies
- Electron brem. recovery
- π^0 reconstruction and jet matching

JINST 15 P11005
Future colliders and calorimetry

The next international collider will most likely be an e+e- collider, Higgs factory with capabilities of numerous precision measurements at the EW scale.

High resolution EM calorimetry equally important, eg

- Unexpected, even invisible, Higgs decay
- Precision W/Z-boson studies
- Electron brem. recovery
- π^0 reconstruction and jet matching

JINST 15 P11005

eg, photon matching in 6 jet event:

w/ π^0 clustering
w/o π^0 clustering

HepSim

\[\text{HZ} \rightarrow q\bar{q}q\bar{q}q\bar{q} \]
CALVISION formed to pursue calorimetry efforts on multiple fronts:

- Crystal DR ECAL
- Fiber DR HCAL
- Full Detector studies (sim.)
- New RECO algorithms
- BlueSky R&D (materials, sensors, R/O, ...)

Multi-year efforts proposed in each area.

1st phase:
- Lower level R&D
- Single modules, small arrays
- Materials/technology evaluations
- Building up simulation program

Scale up modules in next phase

This talk will focus only on studies related to DR in a crystal ECAL
See also talks on other fronts by
- R. Zhu on Scintillator R&D
- S. Chekanov on DR Calorimetry Simulation
EM calorimetry

Showers relatively uniform. Excellent energy resolution has been realized in numerous EM calorimeters over the past few decades.

Homogeneous EM Calorimeters

<table>
<thead>
<tr>
<th>Technology (Experiment)</th>
<th>Depth</th>
<th>Energy resolution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_4$Ge3O${12}$ (BGO) (L3)</td>
<td>22X$_0$</td>
<td>2%/$/sqrt{E}$ \oplus 0.7%</td>
<td>1993</td>
</tr>
<tr>
<td>CsI (KTeV)</td>
<td>27X$_0$</td>
<td>2%/$/sqrt{E}$ \oplus 0.45%</td>
<td>1996</td>
</tr>
<tr>
<td>CsI(Tl) (BaBar)</td>
<td>16–18X$_0$</td>
<td>2.3%/$/E^{1/4}$ \oplus 1.4%</td>
<td>1999</td>
</tr>
<tr>
<td>PbWO$_4$ (PWO) (CMS)</td>
<td>25X$_0$</td>
<td>3%/$/sqrt{E}$ \oplus 0.5% \oplus 0.2$/E$</td>
<td>1997</td>
</tr>
<tr>
<td>Liquid Kr (NA48)</td>
<td>27X$_0$</td>
<td>3.2%/$/sqrt{E}$ \oplus 0.42% \oplus 0.09$/E$</td>
<td>1998</td>
</tr>
</tbody>
</table>

Achieved resolutions in the range:

Homogeneous:
~ few %/sqrt(E)

Sampling
~10-15%/sqrt(E)
Hadron calorimetry

Much more challenging to precisely measure E deposition by hadrons

Showers include a pure EM component with **large** E dependence and fluctuations

=> different response, e/h > 1, degrades resolution

Purely hadronic component can result in significant amount of missing energy (eg ~8 MeV/nucleon release, neutrons interacting late wrt integration times, ...)

Also dependence on materials

\[\lambda_1 \text{ [cm]} \approx \frac{35.00 \text{ [g cm}^{-2}]^{3/2}}{\rho \text{ [g cm}^{-3}]} \]

Parameterization:

\[f_{em} = 1 - \frac{F_{had}}{F_{em}}^{(k-1)} \]

\[\begin{align*}
\text{Cu} & : 0.82, E_0 = 0.2 \text{ GeV} \\
\text{Pb} & : 0.82, E_0 = 1.3 \text{ GeV} \\
\text{NIM A316 (1992)} & : 184 \\
\text{NIM A399 (1997)} & : 202
\end{align*} \]
Hadron calorimetry

Much more challenging to precisely measure E deposition by hadrons

Showers include a pure EM component with large E dependence and fluctuations => different response, e/h>1, degrades resolution

Examples of e/h
CMS: 2.4 (1.3) ECAL (HCAL)
ATLAS 1.37

hadronic resolution
~ 85%/\sqrt{E}
~ 52%/\sqrt{E}

\[\lambda_1 \, [\text{cm}] \approx \frac{35.00 \, [\text{g cm}^{-2}]^{\frac{3}{2}}}{\rho \, [\text{g cm}^3]} \]

Purely hadronic component can result in significant amount of missing energy (eg ~8 MeV/nucleon release, neutrons interacting late wrt integration times, ...
Effect of an optimized EM section in traditional calorimetry

Large dispersion in E_{vis} and non-linearity for hadrons

Strong dependence on location of interactions if layers have non-uniform e/h
Improving jet resolutions

Taking state of the art EM calorimeter energy resolution as sufficient for future physics needs, the focus is (simultaneously) improving hadron performance.

Two general approaches

- **Particle-flow**: use track info to measure charged jet fragments and calorimeter data mainly for the measurement of neutral particles.
 - Requires fine (transverse) granularity to separate showers
 - “Confusion term” for co-linear particles/showers important at high energy

- **Dual-readout**: use proxy for invisible E component of hadron showers
 - Effectively use an evt-by-evt measure of EM fraction of hadronic showers
 - More moderate requirements on granularity
 - **Complimentary** to (also **compatible** with) PF methods
 - Apply to **BOTH** EM and hadronic layers to optimize resolution
How/why DR works

$$E = \frac{(\xi S - \hat{C})}{(\xi - 1)}$$

Hadronic event (π^- here) can be seen to scatter about the fixed slope

Slope depends only on e/h values and is therefore energy and species independent

\hat{C}, S measurements effectively determine f_{em} and allow a shower-by-shower correction \Rightarrow proxy to correct for invisible energy

Nice review: RevModPhys.90.025002
DREAM/RD52 previously investigated DR of crystals with PMTs using BOTH optical filters and timing to separate Č and S signals

A proof of principle for a DR crystal calorimeter, but

- Resolution dominated by limited statistics for # of photons detected (only a small fraction of Č and S photons selected)
- Improvements needed on efficiency, λ range of light collection
- Not pursued further:
 - Cost with PMT readout
 - Limited wavelength sensitivity
 - ‘acceptable’ EM resolution demonstrated in fiber calorimeter for goals of the day

Vast improvement in SiPMs in past decade can significantly improve DR EM+HAD detector performance

NIM 686 (2012) 125
Rev. Mod phys. 90 (2018) 40
Calvision: initial studies for DR ECAL

Initial bench and beam tests for xtal ECAL focusing on understanding photon collection in various materials (PWO, BGO, PbF, BSO, etc)

Each have different advantages/challenges for performance criteria

- acquire data for tuning simulation
- guide choices for a ‘phase 2’ ECAL module sufficient in size to contain an electron shower
- Gain experience with FE electronics, readout and beam interfaces to run efficient beam tests

‘Phase 3’ is planned to develop a larger ECAL, sufficient to use with single hadrons in ECAL+HCAL resolution studies in collaboration with IDEA

Performance/feasibility of concept strongly depends on:

- Adequate sampling statistics of Č light (>~50 photons/GeV)
- Need large area sensors
- Sufficient separation of Č from S light to avoid washing out signal
- Wavelength, timing/pulse shape discriminators
- For state of art ECAL resolution, reasonably large S is desirable. May require some care to address saturation effects in SiPMS/readout
- Eg small cell, fast recovery devices
Two main test beam efforts @FNAL in 2023

- **Test beam 1: 120 GeV proton beam**
 - PWO/BGO, interference/absorption filters
 - Concentrated on beam on long axis
 - MIPs + showering events
 - Study light collection and S, Č components
 - Readout: homemade front end + Lecroy scope 10GS/s
 - Qualitative results today

- **Test beam 2: 120 GeV proton beam**
 - PWO/BGO/PbF
 - absorption filters
 - Concentration on angular dependence of light collection
 - Aim to tune MC and identify Č/S signal + variations (consistent w/ Č emission cone)
 - Readout: homemade front end + 5GS/s DRS
 - Stay tuned for future reports

Baseline bar configuration

Hamamatsu
S14160-6050HS
Large area 6x6 mm SiPMs*

*Also planning tests for devices w/ similar specs from Broadcom
April ‘23 proton test beam at Fermilab

4 orientations

PbWO₄
- w/ scint filter
- w/o filter

BGO
- w/ scint filter
- w/o filter

660 nm long-pass interference filter on PWO

Results shown here

U330 absorptive notch- filter on BGO

n.b. Crystal transparency is poor at NUV where Č light is most intense => use longer wavelengths beyond scint spectrum. Improvements in NIR sensitive GAPDs very desirable

Readout (fast scope)

Thanks to Chris Madrid and Artur Apresyan for their support and opportunity use this beam time.
Preliminary analysis of proton on BGO data

Simulation:
MPV = 66 MeV
Select tracks with deposited energy 50–100 MeV

DATA:
MPV = 50 mV
Select tracks with reconstructed amplitude 35–100 mV

MIP spectrum

Good S/N in data
Signal analysis (BGO)

Modeling of signal shapes using data + photon tracing in Geant4

Single photon response (SPR) SiPM + Amplifier

Scint signal, integrating over photon production/arrival times

Ĉ signal, integrating over photon prod./arrival times

From data + BGO scintillation decay time

SPR from (de)convolution of average measured signal w/o filter + BGO decay time.

Light production models \& propagation \& electronics response function

Used as templates for fitting pulse components
Signal analysis data (BGO)

Fits to average MIP signal using two components

Correcting for 1PE amplitude
~0.6mV yields Order of <20>PE/MIP

Example of showering event
- ~50 MIPs
- Order of a few GeV E loss
- Best fit result ~1k photons in Č component of fit

Very encouraging!
Conclusions

Analysis of first test beam data is in progress

- Preliminary analysis suggests the presence of a significant detected Č Č signal component in filtered data from hadrons (protons) on BGO => our main requirement for implementing DR
- More results to follow, including angular dependence of S/Č collection in 2nd test beam. Strong verification of modeling and light collection performance, additional filter studies.
- Also timing performance studies in progress

Future test beam plans to improve quantitative results:

- Explore additional crystal and filter combinations
- Enhance test stand with better noise rejection, user friendly mechanics, and SiPM temperature control
- Include an in-situ calibration system for test beams
- Study/improve linearity of readout over range of interest for test beam
- Additional consistency checking of signal modeling and cross check on nonscintillating crystal
- Continued tuning of simulation to match measured material properties and performance
- ...
- Prepare for stage 2 (mechanics, electronics) to test ~8x8 ECAL matrix

Supported via: DE-SC0022045
More slides
Conclusions

Analysis of first test beam data is in progress

• Preliminary analysis suggests the presence of a significant detected \hat{C} signal component in filtered data from hadrons (protons) on BGO => our main requirement for implementing DR
• More results to follow, including angular dependence of S/\hat{C} collection in 2nd test beam. Strong verification of modeling and light collection performance, additional filter studies.
• Also timing performance studies in progress.

Future test beam plans to improve quantitative results:

• Explore additional crystal and filter combinations
• Enhance test stand with better noise rejection, user friendly mechanics, and SiPM temperature control
• Include an in-situ calibration system for test beams
• Study/improve linearity of readout over range of interest for test beam
• Additional consistency checking of signal modeling and cross check on nonscintillating crystal
• Continued tuning of simulation to match measured material properties and performance
• ...
• Prepare for stage 2 (mechanics, electronics) to test ~8x8 ECAL matrix
CALVISION

R&D consortium dedicated to detector R&D future colliders, emphasis on detector to meet physics requirements for next lepton collider.

- Precise measurements of the Higgs boson properties, and
 - W and Z bosons physics as critical tests of Standard Model
 - and their use in exploration of new physics beyond the SM
- Develop complimentary technologies to typical PFA approaches
- Explore (moderately) high granularity calorimetry with:
 - Intrinsic dual readout capabilities
 - State of art EM resolution (homogeneous crystal)
 - Hadron performance comparable to fiber-based DR
- Bluesky R&D on materials, sensors, readout, techniques
- Collaborate in international efforts on best detector solutions
A Segmented DRO Crystal ECAL + DRO Fiber HCAL

Concept:

- (Optional) timing layer
- Segmented ECAL
- Thin solenoid
- DREAM/RD52 style HCAL

SCEPCal:
- Segmented
- Crystal
- Electromagnetic
- Precision
- Calorimeter

Concept highlights advantages for physics program with precision ECAL
Segmented ECAL

Two layers w/ high density (short X_0, small R_M)
- Fast signal, reasonable Č/S ratio, cost effective
- PbWO_4, BGO and BSO are good candidates

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Density g/cm2</th>
<th>X_0 cm</th>
<th>λ_l cm</th>
<th>R_M cm</th>
<th>Relative Yield</th>
<th>Decay time ns</th>
<th>Refractive index</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbWO_4</td>
<td>8.3</td>
<td>0.89</td>
<td>20.9</td>
<td>2.00</td>
<td>1.0</td>
<td>10</td>
<td>2.20</td>
</tr>
<tr>
<td>BGO</td>
<td>7.1</td>
<td>1.12</td>
<td>22.7</td>
<td>2.23</td>
<td>70</td>
<td>300</td>
<td>2.15</td>
</tr>
<tr>
<td>BSO</td>
<td>6.8</td>
<td>1.15</td>
<td>23.4</td>
<td>2.33</td>
<td>14</td>
<td>100</td>
<td>2.15</td>
</tr>
<tr>
<td>CsI</td>
<td>4.5</td>
<td>1.86</td>
<td>39.3</td>
<td>3.57</td>
<td>550</td>
<td>1220</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Longitudinal profiles

Separation of photons w/ 3° opening angle
Segmented ECAL

Two segmentation layers

- Front segment (~6 X_0, ~50 mm)
- Rear segment (~16 X_0, ~140 mm)
- Longitudinal segmentation useful for the separation of electrons and pions (can also be included in $e/\gamma/\pi^\pm$, separation methods)

Front to rear energy vs transverse distribution

EM shower

MIP signal ~10 MeV/cm

SCEPCAL++

10.1088/1748-0221/15/11/P11005
SCEPCal +DRO HCAL performance studies

DRO corrections

HCAL

- *Geant4 simulation*

ECAL

- *Geant4 simulation*

Neutral hadron E resolution

- *Geant4 simulation*

DREAM HCAL - kaon0L

\[\sigma_{E/E} \approx 27% \sqrt{E} \oplus 2\% \]

Electron E resolution

- *Geant4 simulation*

Total energy resolution

\[\sigma_{E/E} \approx 3.0\% \sqrt{E} \oplus 0.5\% \]

- *Photostatistics*
- *Shower fluctuations*
- *Noise*

Electron energy resolution maintained at level of best crystal calorimeters

- *SCEPCAL++*
 - Similar sampling term as that of a pure DRO HCAL
 - DR in EM + hadron sections
 - Slightly larger constant term:
 - Intrinsic limitation in system combining segments with different e/h ratios
 - Material budget from the ECAL services and the solenoid

M. Luccini

Nov-2023

CPAD Workshop
June 2023 Test Beam @Fermilab Datasets

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Size</th>
<th>Filter (S side only)</th>
<th>Run #</th>
<th>Angle (°)</th>
<th># of events</th>
<th>Saturate-ed-event rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 to ±90 (10° interval)</td>
<td>~40k-70k</td>
<td></td>
</tr>
<tr>
<td>PbF2</td>
<td>6x2.5x2.5 cm³</td>
<td>No filter</td>
<td>11-29</td>
<td>0 to ±90 (10° interval)</td>
<td>~40k-70k</td>
<td>30°<</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30°<</td>
<td>θ</td>
<td><60°: 10% 60°<</td>
</tr>
<tr>
<td>PWO</td>
<td></td>
<td>R60</td>
<td>31-66</td>
<td>0 to ±90 (5° interval, except ±85°)</td>
<td>~30k-70k</td>
<td>30°<</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No filter</td>
<td>103-121</td>
<td>0 to -50 (5° interval), 0 to +25 (5° interval), ±90</td>
<td>~20k-40k</td>
<td>30°<</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGO</td>
<td></td>
<td>U330</td>
<td>68-101</td>
<td>0 to -45 (5° interval), 0 to +50 (5° interval), -55, -65, -75, ±90</td>
<td>~50k-60k</td>
<td>30°<</td>
</tr>
</tbody>
</table>

Non scintillating, Ĉ only
Average Time Spectrum ($\theta=0^\circ$)

- The spectra are averages over events.
- PbF2: no filter for all channels; PWO and BGO: w/ filter for ch 0-3, w/o filter for ch 4-7
June 2023 Test Beam @Fermilab Datasets

Ch 7

[Graph showing ADC count vs time (ns) for Ch 7 with different materials and filters.]
- Without filter
- With filter

Ch 3

[Graph showing ADC count vs time (ns) for Ch 3 with different materials and filters.]
- Without filter
- With filter