

Progresses of Inorganic Scintillators for Future HEP Calorimeters

Liyuan Zhang and Ren-Yuan Zhu California Institute of Technology

November 8, 2023

Presentation in the CPAD Workshop 2023, SLAC

2019 DOE Basic Research Needs Study Priority Research Directions for Calorimetry

- Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments;
- Develop ultrafast media to improve background rejection in calorimeters and particle identication detectors.

DOE 2019: <u>https://www.osti.gov/servlets/purl/1659761</u> ECFA 2021: <u>https://cds.cern.ch/record/2784893</u> Snowmass 2021: <u>https://arxiv.org/abs/2209.14111</u> Fast/ultrafast, radiation hard and cost-effective inorganic scintillators

PWO damage due to ionization dose and hadrons

PWO Damage by Ionization & Neutrons

RIAC in PWO = $1.4 \times 10^{-14} \times 1$ MeV n_{eq} Fluence

γ-ray and hadron induced absorption explains CMS PWO monitoring data http://www.its.caltech.edu/~rzhu/talks/ryz_161028_PWO_mon.pdf & Trans. NS. 67 (2020) 1086-1092

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2023, SLAC

LYSO:Ce Radiation Hardness

IEEE TNS 63 (2016) 612-619

CMS BTL LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Damage induced by protons is larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

11/8/2023

LuAG:Ce Ceramics Radiation Hardness

IEEE TNS 69 (2022) 181-186

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7 \times 10^{15} n_{eq}$ /cm² and $1.2 \times 10^{15} p$ /cm², promising for FCC-hh

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

RADiCAL: LYSO/LuAG Shashlik ECAL

arXiv: 2203.12806, see also J. Wetzel in this workshop

RADiation hard **CAL**orimetry Reducing light path length to mitigate radiation damage effect Using radiation hard materials: LuAG:Ce ceramics excitation matches LYSO:Ce emission

2

3

19

20

Light Output and Response Uniformity

10.1109/NSS/MIC44867.2021.9875908

Excellent longitudinal uniformity observed for a Φ0.6 ×120 mm³ LuAG:Ce ceramic excited by a 420 nm LED at different location, with a solid coupling to a quartz fiber, mimicking its application in RADiCAL

Ultrafast BaF₂:Y Calorimeter for Mu2e-II

Use ultrafast material to mitigate pile-up

Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
Time resolution	σ < 500 ps
 Position resolution 	σ < 10 mm
 Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of $10^{12} n_1$ MeV equivalent/cm ² total 3 x $10^{11} n_1$ MeV equivalent/cm ² total

Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:2203.07596

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2023, SLAC

CsI+SiPM

11/8/2023

BaF₂:Y for Calorimetry & Imaging

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

FWI T

300 nm

89.9%

89.5%

87.1%

88.4%

88.3%

450

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF_2 : Y and BaF_2 crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2023, SLAC

PDE of UV SiPM for BaF₂ and BaF₂:Y

D. Hitlin in this workshop, see also IEEE TNS 69 (2022) 958-964

Photodetector	EWPDE _{fast} (%)	EWPDE _{slow} (%)	Relative F/S _{BaF}	Relative F/S _{BaF:Y}	
Hamamatsu MPPC	10.5	9.8	1/4.8	1/1.5	
FBK SiPM 2021	17.8	12.7	1/3.6	1/1.1	
FBK SiPM 2023-1	14.8	4.6	1/1.6	1/0.5	
FBK SiPM 2023-2	14.8	5.0	1/1.7	1/0.5	

γ-ray induced readout noise is reduced by BaF₂:Y slow suppression & solar-blind PDE

11/8/2023

Novel Lu₂O₃:Yb Ceramics

Presented in the NSS2022 conference https://www.its.caltech.edu/~rzhu/talks/NSS22_N21-03.pdf

Lu_2O_3 : Yb ceramic of 9.4 g/cc shows an ultrafast decay time of **1.1 ns** by Am-241 with negligible slow component observed in integrated light output measurement

The HHCAL Concept

l energy, 100 GeV

100 cm

R.-Y. Zhu, ILCWS-8, Chicago: a HHCAL cell with pointing geometry

A. Para, H. Wenzel and S. McGill in Callor2012 Proceedings and
A. Benaglia *et al.*, IEEE TNS **63** (2016)
574-579: a jet energy resolution at a level of 20%/√E by HHCAL with dual readout of S/C or dual gate.
M. Demarteau, 2021 CPAD Workshop

5x5 cm

10

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2023, SLAC

Inorganic Scintillators for HHCAL

Presented in 9/14/2023 CalVision meeting All samples measured at Caltech Crystal Lab

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO:Ce Glass	DSB:Ce Glass	ABS:Ce Glass
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	4.3	6.0
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁷	1550	?
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	2.58	1.56
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.90	3.24	2.49
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	30.9	24.2
Z _{eff} value	71.5	73.8	73.6	76.7	74.7	11.1	41.4	49.5	56.6
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	6.1	8.0
Emission Peak ^a (nm)	480	470	425 420	١	420	300 750	365	420	400
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	?	?	?
LY (ph/MeV)⁰	7,500	1,500	130	Υ	150	7,900	450	1,360	1,150
Decay Time ^a (ns)	300	100	30 10	۸	3	300 3200	40	500	740
d(LY)/dT (%/ºC) ^c	-0.9	?	-2.5	λ	?	?	?	0.3	?
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	2.0	2.0	<1

Summary

The HL-LHC and FCC-hh require fast and radiation hard inorganic scintillator. **RADiCAL** proposes an ultra-compact, fast timing and longitudinally segmented shashlik calorimeter with LuAG:Ce ceramics as wavelength shifter for LYSO:Ce crystals. R&D is on-going to suppress slow components in LuAG:Ce. Mu2e-II considers ultrafast BaF₂:Y calorimeter. R&D is on radiation hardness of BaF₂:Y and solar-blind SiPM. Industry is developing ultrafast Lu₂O₃:Yb ceramics. **CalVision** proposes a dual readout longitudinally segmented crystal ECAL combined with the IDEA HCAL promising excellent EM and Hadronic resolutions for the proposed lepton Higgs factory. Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total absorption. Novel cost-effective heavy scintillating glass is under development by industry. Acknowledgements: DOE HEP Award DE-SC0011925