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Motivation 
● LHC upgrade requires technologies to deal with an increase in 

luminosity, pileup, & data, in a high radiation-environment
● LHC pp collisions occur at 40MHz, are selected by a trigger to read 

out events   ~ 1MHz
● Currently, events with new physics only in the pixel data are not 

selected at all
● AI embedded on a chip can be used to filter data at the source, 

enabling data reduction AND taking advantage of pixel information to 
enable new physics measurements and searches

To Learn More:

● CPAD 2022: J. Dickinson, Smart pixels with data reduction at source
● CPAD 2023: B. Parpillon, Readout IC for future Phase III high 

luminosity upgrade of the large Hadron collider
● ICAD 2023: G. Di Guglielmo,  Smart pixel sensors: towards on-sensor 

filtering of pixel clusters with deep learning
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LHC Luminosity
● LHC design 1034 cm-2 s-1

● LHC Runs 2/3: 2 x LHC
● HL-LHC: 5 to 7 x LHC

https://indico.bnl.gov/event/17072/timetable/?view=standard
https://indico.slac.stanford.edu/event/8288/contributions/7689/
https://indico.slac.stanford.edu/event/8288/contributions/7689/
https://fastmachinelearning.org/iccad2023/program.html
https://fastmachinelearning.org/iccad2023/program.html


Data reduction

● Data reduction through 
○ Filtering through removing low pT clusters
○ Featurization through converting raw data to 

physics information
● Combination of approaches can reduce 

data rate enough to use pixel 
information at Level 1
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Particle tracks

● Reconstructing vertices is critical
● Connecting the dots between charge collected 

in different pixel layers creates a particle track
● Solenoid magnet immerses the pixel detector in 

a B-field, causing tracks to curve 
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Very curved → low momentum
Almost straight → high momentum



Simulated dataset (link)

● Simulated charge deposition from pions
○ Initial conditions = fitted tracks from CMS
○ For a range of hit positions, incident angles 

● Assume a futuristic pixel detector
○ 21x13 array of pixels
○ 50x12.5 µm pitch, 100 µm thickness
○ Located at radius of 30 mm
○ 3.8 T magnetic field
○ Time steps of 200 picoseconds
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https://zenodo.org/record/7331128


ML Inputs: y-position

● The shape of the cluster is strongly correlated 
with its y-position (its azimuthal position with 
respect to the center of the sensor)

● Cluster y-size vs. y-position shows clear 
correlation between size & position 

○ Decrease in cluster size from left to right is due to 
Lorentz drift

○  The final model chosen uses y-profile (not y-size) due 
to the former’s better performance
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ML Inputs: y-profile
● We use ML due to complicated pulse shapes, and drift & 

induced currents
● y-profile (sum over pixel rows) projects the cluster shape on 

the y-axis and is sensitive to the incident angle β and thus the 
particle’s pT

● x-profile (sum over pixel columns) is parallel to B, and 
uncorrelated with pT
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High pT cluster Low pT positively charged cluster Low pT negatively charged cluster



Classification Goals

● Keep as many high pT clusters as possible 
for physics

● Decrease data bandwidth

8

Baseline full precision model



Metrics
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Model 2 was chosen for implementation



Data Reduction: Estimate 54.4% ~ 75.4%
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● Current detector only rejects single pixels; We can vastly improve on this!
● We reject 36.3% of simulated clusters (40% of dataset), 61.9% of multi-pixel untracked clusters 

(55% of dataset), and all single pixels (5% of dataset), giving a lower bound data reduction rate 
of 54.4%

● If we reject all untracked clusters, get an upper bound data reduction rate of 74.5% 
● Since data readout is proportional to number of pixels in a cluster, if we reweight clusters by 

number of pixels, we reduce data by 54.4 ~ 75.4% 



Model Quantization

● y-profile: 2-bit quantization chosen
● y-position quantized to 6-bit 
● QKeras library for quantization-aware 

training
● Also, 400 e- electron threshold chosen
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On-chip implementation
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● Region specific implementation
○ 13 locally customizable 

(reprogrammable weights) neural 
networks implemented directly in the 
front-end

○ Reconfigurable weights so we can 
adapt to changing detector conditions

● Design space optimization



ROIC chip
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● Design expected to operate at < 300 μW 
● Area < 0.2mm2

● 4 analog frontends, surrounded by a digital region
● Simulation: 13 x 21; Chip: 16 x 16



Future Directions
● Hardware implementation 

○ Tapeout expected by the end of this year
○ CPAD talk : Benjamin Parpillon: Readout IC for future Phase III 

high luminosity upgrade of the large Hadron collider
● Ongoing work

○ Studies on untracked clusters
○ Neuromorphic Approach with SNN
○ Regression studies: Train an algorithm to extract properties 

(positions, angles, and errors); expect further 5x improvement in 
data reduction!

○ Applications to other colliders (we’re holding a workshop this 
Dec. Contact us for more info.!)

● Eventually enable improved AI performance through 
the ability to share data across layers (e.g., use 
photonic links)

● For more info! 
○ Check out our preprint: https://arxiv.org/abs/2310.02474 
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