

Emerging approaches for a flexible and energy-efficient readout

Prafull Purohit

CPAD Workshop 2023

Outline

- Background
 - Imaging applications
 - Readout mechanisms
- Arbitration mechanisms:
 - Tree-based arbitration
 - Ring-based arbitration
- Trade-offs
- Summary

Before we begin...

All copyrights and trademarks of presented material belong to their respective IP owners and are used under Fair Use for educational purposes.

Pixel array

- Consists of:
 - -2D array of pixels
 - Readout circuit
- Different types of detectors
 - Applications
 - Capabilities/features
- Detectors for scientific applications

"Sparse" imaging

Vertex tracking

Single shot imaging

H. N. Chapman, et al. (2007)

[Wikipedia.org]

"Cluster" or Region-of-Interest (ROI)

Representative HIT cluster

A. Himmi (2009)

Read region-of-interest

Levin, Barnaby DA, et al. (2020)

Full-frame readout or "Imaging"

X-ray tomography

- Provides 3D structural properties
- Multiple images at different angles
- Information from all pixels
- 100s to 1000s of such images

4D STEM

- Collect full 2D diffraction pattern at each scan position
- Different imaging masks applied in post processing
- 100s to 1000s of such images
- Requires high-speed readout

Readout approaches

- A detector supporting different readout modes:
 - Sparse mode (mode-S)
 - Cluster mode (mode-C)
 - Full-frame mode (mode-F)
- Different (existing) ways to read an array:
 - Scanning readout
 - Compressed readout
 - Arbitrated readout

Scanning readout

- Passive data readout
- Sequential, one pixel at a time
- I/O bandwidth: high
- Latency: high
- Ex: CCD, CMOS imagers

+ banking, column parallel readout, etc.

Compressed readout

- Passive data readout
- Sequential (with smart encoding schemes)
- I/O bandwidth: lower
- Latency: high
- Ex: scientific imagers

+ ROI, zero-thresholding, sub-sampling, etc.

Arbitrated or Event-driven readout

- Active data readout
- One pixel at a time (arbitrary row/column)
- I/O bandwidth: low
- Latency: low
- Ex: event-camera, dynamic vision sensor
- Pixel ID is part of the data

Readout modes and approaches

	Sparse mode (mode-S)	Cluster mode (mode-C)	Full frame mode (mode-F)
Scanning readout	×	×	
Compressed readout	×	\checkmark	\checkmark
Arbitrated readout	\checkmark	\checkmark	\checkmark

Not supported

✓ Supported

✓ Not efficient

Arbitrated readout

Event-driven Imaging

- Originated from Silicon Retina project
 - Mahowald and Mead in early 90s
 - Designed an imager inspired by human retina
- Many visible light imagers designed – DVS, ATIS, DAVIS, etc.
- Application in scientific imaging:
 - High Energy Physics
 - Synchrotron Radiation Imaging
 - Electron Microscopy

14

Address-Event Representation (AER)

- Asynchronous communication protocol
 - encode sparse neural events
 - event ID is encoded as address
 - time-multiplex that information onto a shared output channel
- Proposed for communication between neuromorphic chips
 - used in imagers to communicate pixel ID

Tree-based arbitration

Tree-based arbitration

Tree-based arbitration

Data with AER

Event-cameras are good at reporting events. What if you have data from each pixel?

T. Delbruck, et al. (2014)

- Top/right edge logic for event-driven readout
- Bottom/left for scanning readout

D. Gorni, et al. (2021)

Ring-based arbitration

Linear token-ring

N. Imam, et al. (2013)

Ring-based arbitration

N. Imam, et al. (2013)

Ring-based arbitration

Linear token-ring \star \star Counter Address

N. Imam, et al. (2013)

Brookhaven National Laboratory

Trade-offs

Performance depends on:

- Amount of information/communication
- Arbitration mechanism
- Locality of the events

Amount of Information

- For every event: event-address, data, & timestamp!
- Read one data packet per event
- Data rate is proportional to event rate
- Good for low to moderate event rate

T. Poikela, et al. (2014)

- Example: 28 bits/pixel, and 14-16 bits of address
- For occupancies \geq 50 % \rightarrow full-frame readout becomes faster

Arbitration mechanism - evaluation

• Number of token hops

		Delay	K=16	K=64	K=256
Sparse mode⁺	Binary tree	2 * (log ₂ K – 1)	6	10	14
	Greedy tree	2 ∗ (log ₂ K − 1)	6	10	14
	Token ring	(K + 1)/2	8.5	32.5	128.5
	Hier-ring	(H + L)/2	4	8	16
Full frame mode	Binary tree	2K * (log ₂ K – 1)	96	640	3584
	Greedy tree	3K - 6	42	186	762
	Token ring	K	16	64	256
	Hier-ring	K + 2H	24	80	288

- K = number of inputs
 = (H * L)
- H = input in H-ring
- L = input in L-ring

P. Purohit, et al. (2021)

Arbitration mechanism - evaluation

SPICE simulations

		K=16 (ns)	K=64 (ns)	K=256 (ns)	
Sparse mode⁺	Binary tree	1.4	2.1	2.8	
	Token ring	8.2	34.6	140.2	
	Hier-ring	4.2	8.4	16.8	
Full frame mode	Binary tree	22.4	134.4	716.8	
	Token ring	17.6	70.4	281.6	
	Hier-ring	25.6	86.4	313.6	

- K = number of inputs
 = (H * L)
- H = input in H-ring
- L = input in L-ring

P. Purohit, et al. (2021)

Summary

• Scanning readout

Number of pixels $\uparrow \rightarrow$ Power \uparrow , Required bandwidth \uparrow

- Event-driven readout has potential
 Number of events ↑ → Latency ↑, Timing ↓
- Need to customize readout mechanism for pixel detectors

