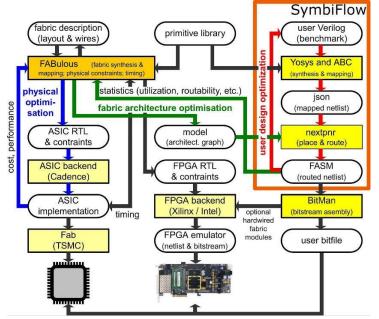
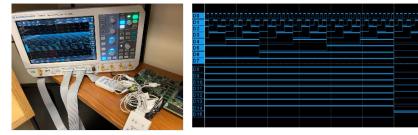
Developments of Reconfigurable Digital Logic in the ASIC using 130nm and 28nm CMOS

Larry Ruckman – <u>ruckman@slac.stanford.edu</u> Julia Gonski, Aseem Gupta, Hyunjoon Kim, Lorenzo Rota,


CPAD 2023 - Nov. 8, 2023

Automated data processing in ASIC/FPGA - FABulous

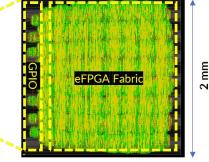
- Goal: Move more data processing into the front-end ASICs
- Often algorithms and data processing techniques must evolve which make ASIC deployment problematic
 - Custom ASICs need to support updatable data processing pipelines
- Several popular FPGA architectures are becoming 20+ years old
 - Original patents have expired
 - Includes Spartan-3 and Virtex-II FPGAs from AMD/Xilinx
- In 2021, University of Manchester has started an open-source project called "FABulous"
 - an Embedded FPGA (eFPGA) Framework
- Idea is that you put an "reconfigurable logic" in your ASIC design
- SLAC is experimenting with this approach to determine it feasibility for front end data processing, both classical and ML based



2

N. Dao, A. Attwood, B. Healy, D. Koch, "FlexBex: A RISC-V with a Reconfigurable Instruction Extension," doi: 10.1109/ICFPT51103.2020.00034.
D. Koch, N. Dao, B. Healy, J. Yu, A. Attwood "FABulous: An Embedded FPGA Framework", doi:10.1145/3431920.3439302
J. Yu, A. Attwood, N. Dao, D. Koch, "The FABulous Open eFPGA Ecosystem in Action - From Specifications to Chips to Running Bitsteams," doi: 10.1109/FPL53798.2021.00090

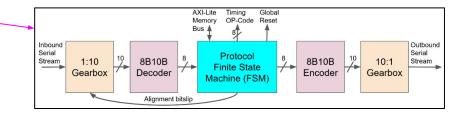
FABulous in 130nm CMOS - FY2022 Effort

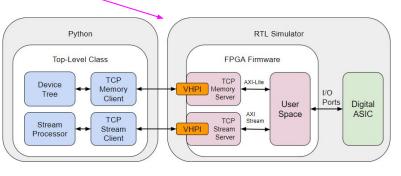

- Simple example eFPGA design to tryout the framework
 - 384 logic cells
 - 128 registers
 - 4 DSP slices
 - Submitted on TSMC 130nm MPW on May 2022
 - ASIC wire bonded to an FMC carrier and eFPGA bitstream loaded from a Xilinx development board
 - Testing started Aug 2022
 - ASIC+eFPGA functionality demonstrated
 - **Goal**: Get more familiar with the open-source framework and tools before implementing an eFPGA in a readout ASIC
 - Also determine where SLAC can contribute to this effort

a anna an Arrain ann a an Arrain an Arrain a Mar an Arrain an Arrain

Fabulous v1 ASIC

Outputs from eFPGA (16b counter) probed with oscilloscope


Floorplan of eFPGA fabric after Place&Route


FABulous in 130nm CMOS - New IP developed

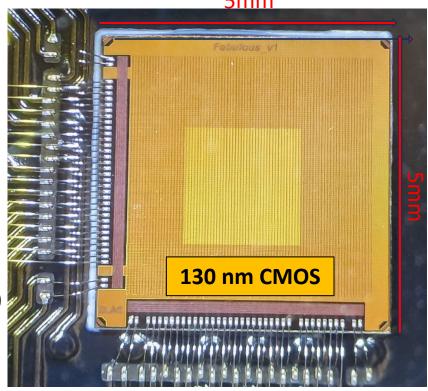
- Developed a new serial protocol for ASIC register access that can be used over standard fiber optics
 - Presented at 2022 IEEE NSS/MIC
 - Adopted for the nEXO charged ASIC design
- Methodology for Digital ASIC, FPGA and Software Development and Verification
 - Also presented at 2022 IEEE NSS/MIC
 - Used to develop the firmware/software and tested it on the ASIC's post-PnR prior to tape out

Added support for Synopsys DC compiler to our **RUCKUS** build system

- DC compiler is used to build RTL code into digital ASIC
- Refer to RDC4 talk on "Rapid Firmware/Software Development with SLAC's Open-Source Tools: SURF, RUCKUS, and ROGUE" this Thursday

5

Technology choice

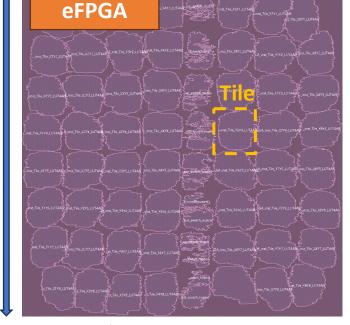

First iteration – last year: 130nm CMOS

- Relatively low-cost technology to experiment with open-source • eFPGA framework
- First-time right design
- Density on older CMOS nodes makes the implementation less attractive

Second iteration - this year: 28nm CMOS

- Scaling brings an improvement in logic density by ~20
- Process selected by US & international community for future • HEP ASIC developments (TSMC High Performance Computing+)
- Better radiation hardness & lower power consumption
- Synergy with other projects: build know-how and IP on 28nm

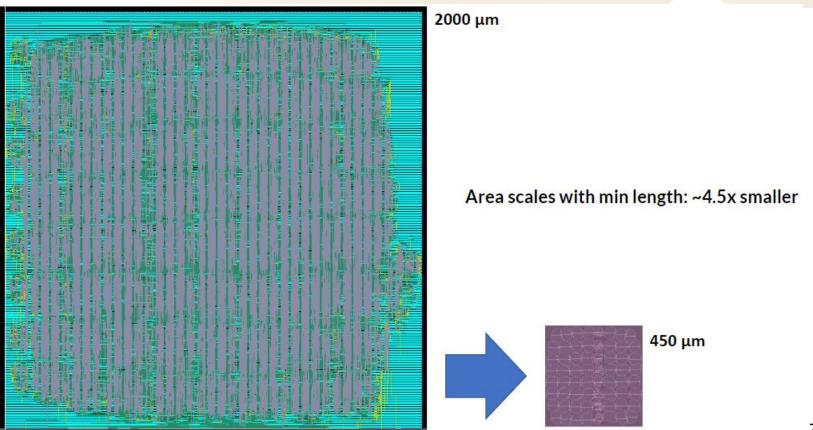
5mm



28nm Design: Floorplan

450 um

SLAC 700 um eFPGA + configuration / readout logic 700 um


450 um

eFPGA consists of:

- Array of 8x8 tiles (scalable & configurable)
- Switch matrix

Scaling: 130nm vs 28nm area

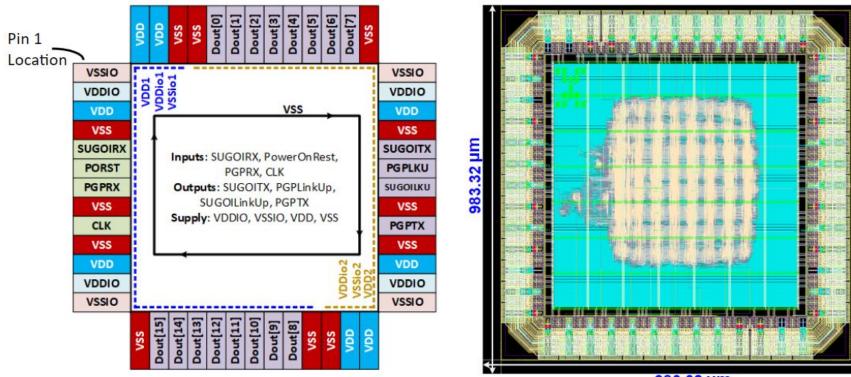
130nm vs 28nm Tiles

130nm fabric.csv config

- No customization from "TSMC example"
- Array of 8x8 tiles
- 384 logic cells, 128 registers, 4 DSP slices
- W_IO is the "GPIO" Tile
- CPU_IO tiles for register interface

28nm fabric.csv config

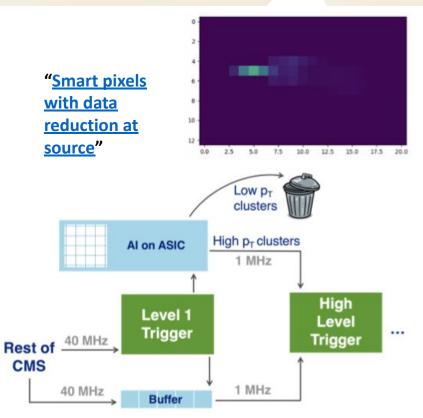
- Custom WEST_IO/EAST_IO for register and streaming interfaces
- Array of 8x8 tiles
- 448 logic cells, 4 DSP slices
 - $\circ \qquad {\sf Found \ logic \ cells \ more \ valuable \ than \ register \ titles}$
 - Logic cells include a register


	A	B	С	D	E	F	G	Н	1	J
1	FabricBegin									
2	NULL	N_term_single2	N_term_single2	N_term_single	N_term_single	N_term_single	N_term_single	N_term_single	N_term_single	NULL
3	W_IO	RegFile	DSP_top	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
4	W_IO	RegFile	DSP_bot	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
5	W_IO	RegFile	DSP_top	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
6	W_IO	RegFile	DSP_bot	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
7	W_IO	RegFile	DSP_top	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
8	W_IO	RegFile	DSP_bot	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
9	W_IO	RegFile	DSP_top	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
10	W_IO	RegFile	DSP_bot	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	LUT4AB	CPU_IC
11	NULL	S_term_single2	S_term_single2	S_term_single	S_term_single	S_term_single	S_term_single	S_term_single	S_term_single	NULL
12	FabricEnd									

130nm fabric.csv config

	A	В	С	D	E	F	G	н	1	J
1	FabricBegin									
2	NULL	N_term_single	N_term_single	N_term_single	N_term_single	N_term_DSP	N_term_single	N_term_single	N_term_single	NULL
3	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_top	LUT4AB	LUT4AB	LUT4AB	EAST_IO
4	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_bot	LUT4AB	LUT4AB	LUT4AB	EAST_IO
5	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_top	LUT4AB	LUT4AB	LUT4AB	EAST_IO
6	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_bot	LUT4AB	LUT4AB	LUT4AB	EAST_IO
7	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_top	LUT4AB	LUT4AB	LUT4AB	EAST_IO
8	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_bot	LUT4AB	LUT4AB	LUT4AB	EAST_IO
9	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_top	LUT4AB	LUT4AB	LUT4AB	EAST_IO
10	WEST_IO	LUT4AB	LUT4AB	LUT4AB	LUT4AB	DSP_bot	LUT4AB	LUT4AB	LUT4AB	EAST_IO
11	NULL	S_term_single	S_term_single	S_term_single	S_term_single	S_term_DSP	S_term_single	S_term_single	S_term_single	NULL
12	FabricEnd									

28nm fabric.csv config


28nm Design: Full chip Integration

983.32 µm

FABulous for Detector Readout

- FABulous in 28nm can enable increased intelligence at the front-end of future detectors in HEP experiments
- AI/ML on-chip is a high priority R&D avenue for the collider community [2306.13567]
 - Data reduction for high channel density
 - Fast classification/inference for trigger information
- *Example*: 28nm ASIC for ML on low-level pixel charge data (right)
- 28nm CMOS is radiation hard; eFPGA needs TMR for configuration/registers
- Open source: potential to apply to variety of subsystems and subfields of HEP (eg. neutrino detectors, free electron lasers)

IEEE Real Time Conference: FABulous eFPGAs

- 24th IEEE Real Time Conference
 - ICISE, Quy Nhon, Vietnam
 - April 22-26, 2024
 - <u>https://indico.cern.ch/event/940112/</u>
- Abstract submissions are now open.
 - Deadline: 2 Dec 2023, 11:59
- Pre-Conference Program: 4 workshop/tutorials will be held
 - Cocotb
 - SURF
 - FABulous eFPGAs
 - Open-source ASIC Design (Skywater, Caravel)

Summary

- Contributed to development of Fabulous Open Source eFPGA
- Established flow to implement an eFPGA on 28nm and 130nm:
 - ASIC implementation
 - eFPGA configuration through FPGA
 - Co-simulation
 - Submitted on TSMC 28nm MPW on July 2023
 - ETA: This week! (shipped out last Friday)
 - ASIC carrier is fabricated and ready for wiring bonding /
 - All RTL code is released as open-source:
 - <u>https://github.com/FPGA-Research-Manchester/FABulous</u>
 - <u>https://github.com/slaclab/surf</u>

